Files
Gymnasium/tests/envs/test_env_implementation.py

443 lines
15 KiB
Python
Raw Permalink Normal View History

import numpy as np
2022-06-16 14:29:13 +01:00
import pytest
import gymnasium as gym
from gymnasium.envs.box2d import BipedalWalker, CarRacing
2022-09-08 10:10:07 +01:00
from gymnasium.envs.box2d.lunar_lander import demo_heuristic_lander
from gymnasium.envs.toy_text import CliffWalkingEnv, TaxiEnv
2022-09-08 10:10:07 +01:00
from gymnasium.envs.toy_text.frozen_lake import generate_random_map
from gymnasium.error import InvalidAction
2022-06-16 14:29:13 +01:00
def test_lunar_lander_heuristics():
"""Tests the LunarLander environment by checking if the heuristic lander works."""
lunar_lander = gym.make("LunarLander-v3", disable_env_checker=True)
2022-06-16 14:29:13 +01:00
total_reward = demo_heuristic_lander(lunar_lander, seed=1)
assert total_reward > 100
@pytest.mark.parametrize("seed", [0, 10, 20, 30, 40])
def test_lunar_lander_random_wind_seed(seed: int):
"""Test that the wind_idx and torque are correctly drawn when setting a seed"""
lunar_lander = gym.make(
"LunarLander-v3", disable_env_checker=True, enable_wind=True
).unwrapped
lunar_lander.reset(seed=seed)
# Test that same seed gives same wind
w1, t1 = lunar_lander.wind_idx, lunar_lander.torque_idx
lunar_lander.reset(seed=seed)
w2, t2 = lunar_lander.wind_idx, lunar_lander.torque_idx
assert (
w1 == w2 and t1 == t2
), "Setting same seed caused different initial wind or torque index"
# Test that different seed gives different wind
# There is a small chance that different seeds causes same number so test
# 10 times (with different seeds) to make this chance incredibly tiny.
for i in range(1, 11):
lunar_lander.reset(seed=seed + i)
w3, t3 = lunar_lander.wind_idx, lunar_lander.torque_idx
if w2 != w3 and t1 != t3: # Found different initial values
break
else: # no break
raise AssertionError(
"Setting different seed caused same initial wind or torque index"
)
def test_carracing_domain_randomize():
"""Tests the CarRacing Environment domain randomization.
CarRacing DomainRandomize should have different colours at every reset.
However, it should have same colours when `options={"randomize": False}` is given to reset.
"""
env: CarRacing = gym.make("CarRacing-v3", domain_randomize=True).unwrapped
road_color = env.road_color
bg_color = env.bg_color
grass_color = env.grass_color
env.reset(options={"randomize": False})
assert (
road_color == env.road_color
).all(), f"Have different road color after reset with randomize turned off. Before: {road_color}, after: {env.road_color}."
assert (
bg_color == env.bg_color
).all(), f"Have different bg color after reset with randomize turned off. Before: {bg_color}, after: {env.bg_color}."
assert (
grass_color == env.grass_color
).all(), f"Have different grass color after reset with randomize turned off. Before: {grass_color}, after: {env.grass_color}."
env.reset()
assert (
road_color != env.road_color
).all(), f"Have same road color after reset. Before: {road_color}, after: {env.road_color}."
assert (
bg_color != env.bg_color
).all(), (
f"Have same bg color after reset. Before: {bg_color}, after: {env.bg_color}."
)
assert (
grass_color != env.grass_color
).all(), f"Have same grass color after reset. Before: {grass_color}, after: {env.grass_color}."
def test_slippery_cliffwalking():
"""Test that the slippery cliffwalking environment is correctly implemented.
We check here that there are always 3 possible transitions for each action and
that there is a 1/3 probability for each.
"""
envs = CliffWalkingEnv(is_slippery=True)
for actions_dict in envs.P.values():
for transitions in actions_dict.values():
assert len(transitions) == 3
assert all([r[0] == 1 / 3 for r in transitions])
def test_cliffwalking():
env = CliffWalkingEnv(is_slippery=False)
for actions_dict in env.P.values():
for transitions in actions_dict.values():
assert len(transitions) == 1
assert all([r[0] == 1.0 for r in transitions])
2022-06-16 14:29:13 +01:00
@pytest.mark.parametrize("seed", range(5))
def test_bipedal_walker_hardcore_creation(seed: int):
"""Test BipedalWalker hardcore creation.
BipedalWalker with `hardcore=True` should have ladders
stumps and pitfalls. A convenient way to identify if ladders,
stumps and pitfall are created is checking whether the terrain
has that particular terrain color.
Args:
seed (int): environment seed
"""
HC_TERRAINS_COLOR1 = (255, 255, 255)
HC_TERRAINS_COLOR2 = (153, 153, 153)
env = gym.make("BipedalWalker-v3", disable_env_checker=True).unwrapped
hc_env = gym.make("BipedalWalkerHardcore-v3", disable_env_checker=True).unwrapped
2022-06-16 14:29:13 +01:00
assert isinstance(env, BipedalWalker) and isinstance(hc_env, BipedalWalker)
assert env.hardcore is False and hc_env.hardcore is True
env.reset(seed=seed)
hc_env.reset(seed=seed)
for terrain in env.terrain:
assert terrain.color1 != HC_TERRAINS_COLOR1
assert terrain.color2 != HC_TERRAINS_COLOR2
hc_terrains_color1_count = 0
hc_terrains_color2_count = 0
for terrain in hc_env.terrain:
if terrain.color1 == HC_TERRAINS_COLOR1:
hc_terrains_color1_count += 1
if terrain.color2 == HC_TERRAINS_COLOR2:
hc_terrains_color2_count += 1
assert hc_terrains_color1_count > 0
assert hc_terrains_color2_count > 0
@pytest.mark.parametrize("map_size", [5, 10, 16])
def test_frozenlake_dfs_map_generation(map_size: int):
"""Frozenlake has the ability to generate random maps.
This function checks that the random maps will always be possible to solve for sizes 5, 10, 16,
currently only 8x8 maps can be generated.
"""
new_frozenlake = generate_random_map(map_size)
assert len(new_frozenlake) == map_size
assert len(new_frozenlake[0]) == map_size
# Runs a depth first search through the map to find the path.
directions = [(1, 0), (0, 1), (-1, 0), (0, -1)]
frontier, discovered = [], set()
frontier.append((0, 0))
while frontier:
row, col = frontier.pop()
if (row, col) not in discovered:
discovered.add((row, col))
for row_direction, col_direction in directions:
new_row = row + row_direction
new_col = col + col_direction
if 0 <= new_row < map_size and 0 <= new_col < map_size:
if new_frozenlake[new_row][new_col] == "G":
return # Successful, a route through the map was found
if new_frozenlake[new_row][new_col] not in "#H":
frontier.append((new_row, new_col))
raise AssertionError("No path through the frozenlake was found.")
@pytest.mark.parametrize("map_size, seed", [(5, 123), (10, 42), (16, 987)])
def test_frozenlake_map_generation_with_seed(map_size: int, seed: int):
map1 = generate_random_map(size=map_size, seed=seed)
map2 = generate_random_map(size=map_size, seed=seed)
assert map1 == map2
map1 = generate_random_map(size=map_size, seed=seed)
map2 = generate_random_map(size=map_size, seed=seed + 1)
assert map1 != map2
def test_taxi_action_mask():
env = TaxiEnv()
for state in env.P:
mask = env.action_mask(state)
for action, possible in enumerate(mask):
_, next_state, _, _ = env.P[state][action][0]
assert state != next_state if possible else state == next_state
def test_taxi_encode_decode():
env = TaxiEnv()
state, info = env.reset()
for _ in range(100):
assert (
env.encode(*env.decode(state)) == state
), f"state={state}, encode(decode(state))={env.encode(*env.decode(state))}"
state, _, _, _, _ = env.step(env.action_space.sample())
def test_taxi_is_rainy():
env = TaxiEnv(is_rainy=True)
for state_dict in env.P.values():
for action, transitions in state_dict.items():
if action <= 3:
assert sum([t[0] for t in transitions]) == 1
assert {t[0] for t in transitions} == {0.8, 0.1}
else:
assert len(transitions) == 1
assert transitions[0][0] == 1.0
state, _ = env.reset()
_, _, _, _, info = env.step(0)
assert info["prob"] in {0.8, 0.1}
env = TaxiEnv(is_rainy=False)
for state_dict in env.P.values():
for action, transitions in state_dict.items():
assert len(transitions) == 1
assert transitions[0][0] == 1.0
state, _ = env.reset()
_, _, _, _, info = env.step(0)
assert info["prob"] == 1.0
def test_taxi_disallowed_transitions():
disallowed_transitions = [
((0, 1), (0, 3)),
((0, 3), (0, 1)),
((1, 0), (1, 2)),
((1, 2), (1, 0)),
((3, 1), (3, 3)),
((3, 3), (3, 1)),
((3, 3), (3, 5)),
((3, 5), (3, 3)),
((4, 1), (4, 3)),
((4, 3), (4, 1)),
((4, 3), (4, 5)),
((4, 5), (4, 3)),
]
for rain in {True, False}:
env = TaxiEnv(is_rainy=rain)
for state, state_dict in env.P.items():
start_row, start_col, _, _ = env.decode(state)
for action, transitions in state_dict.items():
for transition in transitions:
end_row, end_col, _, _ = env.decode(transition[1])
assert (
(start_row, start_col),
(end_row, end_col),
) not in disallowed_transitions
def test_taxi_fickle_passenger():
env = TaxiEnv(fickle_passenger=True)
# This is a fickle seed, if randomness or the draws from the PRNG were recently updated, find a new seed
env.reset(seed=43)
state, *_ = env.step(0)
taxi_row, taxi_col, pass_idx, orig_dest_idx = env.decode(state)
# force taxi to passenger location
env.s = env.encode(
env.locs[pass_idx][0], env.locs[pass_idx][1], pass_idx, orig_dest_idx
)
# pick up the passenger
env.step(4)
if env.locs[pass_idx][0] == 0:
# if we're on the top row, move down
state, *_ = env.step(0)
else:
# otherwise move up
state, *_ = env.step(1)
taxi_row, taxi_col, pass_idx, dest_idx = env.decode(state)
# check that passenger has changed their destination
assert orig_dest_idx != dest_idx
@pytest.mark.parametrize(
"env_name",
["Acrobot-v1", "CartPole-v1", "MountainCar-v0", "MountainCarContinuous-v0"],
)
@pytest.mark.parametrize(
"low_high", [None, (-0.4, 0.4), (np.array(-0.4), np.array(0.4))]
)
def test_customizable_resets(env_name: str, low_high: list | None):
env = gym.make(env_name)
env.action_space.seed(0)
# First ensure we can do a reset.
if low_high is None:
env.reset()
else:
low, high = low_high
env.reset(options={"low": low, "high": high})
assert np.all((env.unwrapped.state >= low) & (env.unwrapped.state <= high))
# Make sure we can take a step.
env.step(env.action_space.sample())
# We test Pendulum separately, as the parameters are handled differently.
@pytest.mark.parametrize(
"low_high",
[
None,
(1.2, 1.0),
(np.array(1.2), np.array(1.0)),
],
)
def test_customizable_pendulum_resets(low_high: list | None):
env = gym.make("Pendulum-v1")
env.action_space.seed(0)
# First ensure we can do a reset and the values are within expected ranges.
if low_high is None:
env.reset()
else:
low, high = low_high
# Pendulum is initialized a little differently than the other
# environments, where we specify the x and y values for the upper
# limit (and lower limit is just the negative of it).
env.reset(options={"x_init": low, "y_init": high})
# Make sure we can take a step.
env.step(env.action_space.sample())
@pytest.mark.parametrize(
"env_name",
["Acrobot-v1", "CartPole-v1", "MountainCar-v0", "MountainCarContinuous-v0"],
)
@pytest.mark.parametrize(
"low_high",
[
("x", "y"),
(10.0, 8.0),
([-1.0, -1.0], [1.0, 1.0]),
(np.array([-1.0, -1.0]), np.array([1.0, 1.0])),
],
)
def test_invalid_customizable_resets(env_name: str, low_high: list):
env = gym.make(env_name)
low, high = low_high
with pytest.raises(ValueError):
# match=re.escape(f"Lower bound ({low}) must be lower than higher bound ({high}).")
# match=f"An option ({x}) could not be converted to a float."
env.reset(options={"low": low, "high": high})
def test_cartpole_vector_equiv():
env = gym.make("CartPole-v1")
envs = gym.make_vec("CartPole-v1", num_envs=1)
assert env.action_space == envs.single_action_space
assert env.observation_space == envs.single_observation_space
# for seed in range(0, 10_000):
seed = np.random.randint(0, 1000)
# reset
obs, info = env.reset(seed=seed)
vec_obs, vec_info = envs.reset(seed=seed)
env.action_space.seed(seed=seed)
assert obs in env.observation_space
assert vec_obs in envs.observation_space
assert np.all(obs == vec_obs[0])
assert info == vec_info
assert np.all(env.unwrapped.state == envs.unwrapped.state[:, 0])
# step
for i in range(100):
action = env.action_space.sample()
assert np.array([action]) in envs.action_space
obs, reward, term, trunc, info = env.step(action)
vec_obs, vec_reward, vec_term, vec_trunc, vec_info = envs.step(
np.array([action])
)
assert obs in env.observation_space
assert vec_obs in envs.observation_space
assert np.all(obs == vec_obs[0])
assert reward == vec_reward
assert term == vec_term
assert trunc == vec_trunc
assert info == vec_info
assert np.all(env.unwrapped.state == envs.unwrapped.state[:, 0])
if term or trunc:
break
# if the sub-environment episode ended
if term or trunc:
obs, info = env.reset()
# the vector action shouldn't matter as autoreset
assert envs.unwrapped.prev_done
vec_obs, vec_reward, vec_term, vec_trunc, vec_info = envs.step(
envs.action_space.sample()
)
assert obs in env.observation_space
assert vec_obs in envs.observation_space
assert np.all(obs == vec_obs[0])
assert vec_reward == np.array([0])
assert vec_term == np.array([False])
assert vec_trunc == np.array([False])
assert info == vec_info
assert np.all(env.unwrapped.state == envs.unwrapped.state[:, 0])
env.close()
envs.close()
@pytest.mark.parametrize("env_id", ["CarRacing-v3", "LunarLander-v3"])
def test_discrete_action_validation(env_id):
# get continuous action
continuous_env = gym.make(env_id, continuous=True)
continuous_action = continuous_env.action_space.sample()
continuous_env.close()
# create discrete env
discrete_env = gym.make(env_id, continuous=False)
discrete_env.reset()
# expect InvalidAction (caused by CarRacing) or AssertionError (caused by LunarLander)
with pytest.raises((InvalidAction, AssertionError)):
discrete_env.step(continuous_action)
# expect no error
discrete_action = discrete_env.action_space.sample()
discrete_env.step(discrete_action)
discrete_env.close()