Files
Gymnasium/tests/testing_env.py

223 lines
8.2 KiB
Python
Raw Permalink Normal View History

"""Provides a generic testing environment for use in tests with custom reset, step and render functions."""
2024-06-10 17:07:47 +01:00
2022-12-10 22:04:14 +00:00
from __future__ import annotations
import types
from collections.abc import Callable
2022-12-10 22:04:14 +00:00
from typing import Any
import numpy as np
import gymnasium as gym
2022-09-08 10:10:07 +01:00
from gymnasium import spaces
from gymnasium.core import ActType, ObsType
from gymnasium.envs.registration import EnvSpec
from gymnasium.vector import VectorEnv
from gymnasium.vector.utils import batch_space
from gymnasium.vector.vector_env import AutoresetMode
2022-12-05 19:14:56 +00:00
def basic_reset_func(
self,
*,
2022-12-10 22:04:14 +00:00
seed: int | None = None,
options: dict | None = None,
) -> tuple[ObsType, dict]:
"""A basic reset function that will pass the environment check using random actions from the observation space."""
super(GenericTestEnv, self).reset(seed=seed)
self.observation_space.seed(self.np_random_seed)
return self.observation_space.sample(), {"options": options}
def old_reset_func(self) -> ObsType:
"""An old reset function that will pass the environment check using random actions from the observation space."""
super(GenericTestEnv, self).reset()
return self.observation_space.sample()
def basic_step_func(self, action: ActType) -> tuple[ObsType, float, bool, bool, dict]:
"""A step function that follows the basic step api that will pass the environment check using random actions from the observation space."""
return self.observation_space.sample(), 0, False, False, {}
2022-12-10 22:04:14 +00:00
def old_step_func(self, action: ActType) -> tuple[ObsType, float, bool, dict]:
2022-07-23 15:38:52 +01:00
"""A step function that follows the old step api that will pass the environment check using random actions from the observation space."""
return self.observation_space.sample(), 0, False, {}
2022-12-05 19:14:56 +00:00
def basic_render_func(self):
2022-07-23 15:38:52 +01:00
"""Basic render fn that does nothing."""
pass
class GenericTestEnv(gym.Env):
"""A generic testing environment for use in testing with modified environments are required."""
def __init__(
self,
action_space: spaces.Space = spaces.Box(0, 1, (1,)),
observation_space: spaces.Space = spaces.Box(0, 1, (1,)),
reset_func: Callable = basic_reset_func,
step_func: Callable = basic_step_func,
render_func: Callable = basic_render_func,
metadata: dict[str, Any] = {"render_modes": []},
2022-12-10 22:04:14 +00:00
render_mode: str | None = None,
2022-12-05 19:14:56 +00:00
spec: EnvSpec = EnvSpec(
"TestingEnv-v0", "tests.testing_env:GenericTestEnv", max_episode_steps=100
2022-12-05 19:14:56 +00:00
),
):
2022-12-10 22:04:14 +00:00
"""Generic testing environment constructor.
Args:
action_space: The environment action space
observation_space: The environment observation space
reset_func: The environment reset function
step_func: The environment step function
render_func: The environment render function
metadata: The environment metadata
render_mode: The render mode of the environment
spec: The environment spec
"""
2022-11-10 13:51:51 +01:00
self.metadata = metadata
self.render_mode = render_mode
self.spec = spec
if observation_space is not None:
self.observation_space = observation_space
if action_space is not None:
self.action_space = action_space
2022-12-05 19:14:56 +00:00
if reset_func is not None:
self.reset = types.MethodType(reset_func, self)
if step_func is not None:
self.step = types.MethodType(step_func, self)
if render_func is not None:
self.render = types.MethodType(render_func, self)
def reset(
self,
*,
2022-12-10 22:04:14 +00:00
seed: int | None = None,
options: dict | None = None,
) -> ObsType | tuple[ObsType, dict]:
"""Resets the environment."""
# If you need a default working reset function, use `basic_reset_fn` above
raise NotImplementedError("TestingEnv reset_fn is not set.")
2022-12-10 22:04:14 +00:00
def step(self, action: ActType) -> tuple[ObsType, float, bool, dict[str, Any]]:
"""Steps through the environment."""
raise NotImplementedError("TestingEnv step_fn is not set.")
def render(self):
2022-12-10 22:04:14 +00:00
"""Renders the environment."""
raise NotImplementedError("testingEnv render_fn is not set.")
def basic_vector_reset_func(
self,
*,
seed: int | None = None,
options: dict | None = None,
) -> tuple[ObsType, dict]:
"""A basic reset function that will pass the environment check using random actions from the observation space."""
super(GenericTestVectorEnv, self).reset(seed=seed)
self.observation_space.seed(self.np_random_seed)
return self.observation_space.sample(), {"options": options}
def basic_vector_step_func(
self, action: ActType
) -> tuple[ObsType, np.ndarray, np.ndarray, np.ndarray, dict]:
"""A step function that follows the basic step api that will pass the environment check using random actions from the observation space."""
obs = self.observation_space.sample()
rewards = np.zeros(self.num_envs, dtype=np.float64)
terminations = np.zeros(self.num_envs, dtype=np.bool_)
truncations = np.zeros(self.num_envs, dtype=np.bool_)
return obs, rewards, terminations, truncations, {}
def basic_vector_render_func(self):
"""Basic render fn that does nothing."""
pass
class GenericTestVectorEnv(VectorEnv):
"""A generic testing vector environment similar to GenericTestEnv.
Some tests cannot use SyncVectorEnv, e.g. when returning non-numpy arrays in the observations.
In these cases, GenericTestVectorEnv can be used to simulate a vector environment.
"""
def __init__(
self,
num_envs: int = 1,
action_space: spaces.Space = spaces.Box(0, 1, (1,)),
observation_space: spaces.Space = spaces.Box(0, 1, (1,)),
reset_func: Callable = basic_vector_reset_func,
step_func: Callable = basic_vector_step_func,
render_func: Callable = basic_vector_render_func,
metadata: dict[str, Any] = {
"render_modes": [],
"autoreset_mode": AutoresetMode.NEXT_STEP,
},
render_mode: str | None = None,
spec: EnvSpec = EnvSpec(
"TestingVectorEnv-v0",
"tests.testing_env:GenericTestVectorEnv",
max_episode_steps=100,
),
):
"""Generic testing vector environment constructor.
Args:
num_envs: The number of environments to create
action_space: The environment action space
observation_space: The environment observation space
reset_func: The environment reset function
step_func: The environment step function
render_func: The environment render function
metadata: The environment metadata
render_mode: The render mode of the environment
spec: The environment spec
"""
super().__init__()
self.num_envs = num_envs
self.metadata = metadata
self.render_mode = render_mode
self.spec = spec
# Set the single spaces and create batched spaces
self.single_observation_space = observation_space
self.single_action_space = action_space
self.observation_space = batch_space(observation_space, num_envs)
self.action_space = batch_space(action_space, num_envs)
# Bind the functions to the instance
if reset_func is not None:
self.reset = types.MethodType(reset_func, self)
if step_func is not None:
self.step = types.MethodType(step_func, self)
if render_func is not None:
self.render = types.MethodType(render_func, self)
def reset(
self,
*,
seed: int | None = None,
options: dict | None = None,
) -> tuple[ObsType, dict]:
"""Resets the environment."""
# If you need a default working reset function, use `basic_vector_reset_fn` above
raise NotImplementedError("TestingVectorEnv reset_fn is not set.")
def step(
self, action: ActType
) -> tuple[ObsType, np.ndarray, np.ndarray, np.ndarray, dict]:
"""Steps through the environment."""
raise NotImplementedError("TestingVectorEnv step_fn is not set.")
def render(self) -> tuple[Any, ...] | None:
"""Renders the environment."""
raise NotImplementedError("TestingVectorEnv render_fn is not set.")