Files
Gymnasium/gymnasium/spaces/sequence.py

127 lines
5.4 KiB
Python
Raw Normal View History

"""Implementation of a space that represents finite-length sequences."""
from collections.abc import Sequence as CollectionSequence
from typing import Any, List, Optional, Tuple, Union
import numpy as np
2022-09-08 10:10:07 +01:00
import gymnasium
from gymnasium.spaces.space import Space
class Sequence(Space[Tuple]):
r"""This space represent sets of finite-length sequences.
This space represents the set of tuples of the form :math:`(a_0, \dots, a_n)` where the :math:`a_i` belong
to some space that is specified during initialization and the integer :math:`n` is not fixed
Example::
>>> space = Sequence(Box(0, 1))
>>> space.sample()
(array([0.0259352], dtype=float32),)
>>> space.sample()
(array([0.80977976], dtype=float32), array([0.80066574], dtype=float32), array([0.77165383], dtype=float32))
"""
def __init__(
self,
space: Space,
seed: Optional[Union[int, np.random.Generator]] = None,
):
"""Constructor of the :class:`Sequence` space.
Args:
space: Elements in the sequences this space represent must belong to this space.
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the space.
"""
assert isinstance(
2022-09-08 10:10:07 +01:00
space, gymnasium.Space
), f"Expects the feature space to be instance of a gym Space, actual type: {type(space)}"
self.feature_space = space
super().__init__(
None, None, seed # type: ignore
) # None for shape and dtype, since it'll require special handling
def seed(self, seed: Optional[int] = None) -> list:
"""Seed the PRNG of this space and the feature space."""
seeds = super().seed(seed)
seeds += self.feature_space.seed(seed)
return seeds
@property
def is_np_flattenable(self):
"""Checks whether this space can be flattened to a :class:`spaces.Box`."""
return False
def sample(
self,
mask: Optional[Tuple[Optional[Union[np.ndarray, int]], Optional[Any]]] = None,
) -> Tuple[Any]:
"""Generates a single random sample from this space.
Args:
mask: An optional mask for (optionally) the length of the sequence and (optionally) the values in the sequence.
If you specify `mask`, it is expected to be a tuple of the form `(length_mask, sample_mask)` where `length_mask`
is
- `None` The length will be randomly drawn from a geometric distribution
- `np.ndarray` of integers, in which case the length of the sampled sequence is randomly drawn from this array.
- `int` for a fixed length sample
The second element of the mask tuple `sample` mask specifies a mask that is applied when
sampling elements from the base space. The mask is applied for each feature space sample.
Returns:
A tuple of random length with random samples of elements from the :attr:`feature_space`.
"""
if mask is not None:
length_mask, feature_mask = mask
else:
length_mask, feature_mask = None, None
if length_mask is not None:
if np.issubdtype(type(length_mask), np.integer):
assert (
0 <= length_mask
), f"Expects the length mask to be greater than or equal to zero, actual value: {length_mask}"
length = length_mask
elif isinstance(length_mask, np.ndarray):
assert (
len(length_mask.shape) == 1
), f"Expects the shape of the length mask to be 1-dimensional, actual shape: {length_mask.shape}"
assert np.all(
0 <= length_mask
), f"Expects all values in the length_mask to be greater than or equal to zero, actual values: {length_mask}"
length = self.np_random.choice(length_mask)
else:
raise TypeError(
f"Expects the type of length_mask to an integer or a np.ndarray, actual type: {type(length_mask)}"
)
else:
# The choice of 0.25 is arbitrary
length = self.np_random.geometric(0.25)
return tuple(
self.feature_space.sample(mask=feature_mask) for _ in range(length)
)
def contains(self, x) -> bool:
"""Return boolean specifying if x is a valid member of this space."""
return isinstance(x, CollectionSequence) and all(
self.feature_space.contains(item) for item in x
)
def __repr__(self) -> str:
"""Gives a string representation of this space."""
return f"Sequence({self.feature_space})"
def to_jsonable(self, sample_n: list) -> list:
"""Convert a batch of samples from this space to a JSONable data type."""
# serialize as dict-repr of vectors
return [self.feature_space.to_jsonable(list(sample)) for sample in sample_n]
def from_jsonable(self, sample_n: List[List[Any]]) -> list:
"""Convert a JSONable data type to a batch of samples from this space."""
return [tuple(self.feature_space.from_jsonable(sample)) for sample in sample_n]
def __eq__(self, other) -> bool:
"""Check whether ``other`` is equivalent to this instance."""
return isinstance(other, Sequence) and self.feature_space == other.feature_space