Files
Gymnasium/gym/envs/classic_control/continuous_mountain_car.py

198 lines
6.6 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
@author: Olivier Sigaud
A merge between two sources:
* Adaptation of the MountainCar Environment from the "FAReinforcement" library
of Jose Antonio Martin H. (version 1.0), adapted by 'Tom Schaul, tom@idsia.ch'
and then modified by Arnaud de Broissia
* the OpenAI/gym MountainCar environment
itself from
http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp
permalink: https://perma.cc/6Z2N-PFWC
"""
import math
import numpy as np
import gym
from gym import spaces
from gym.utils import seeding
class Continuous_MountainCarEnv(gym.Env):
"""
Description:
The agent (a car) is started at the bottom of a valley. For any given
state the agent may choose to accelerate to the left, right or cease
any acceleration.
Observation:
Type: Box(2)
Num Observation Min Max
0 Car Position -1.2 0.6
1 Car Velocity -0.07 0.07
Actions:
Type: Box(1)
Num Action Min Max
0 the power coef -1.0 1.0
Note: actual driving force is calculated by multipling the power coef by power (0.0015)
Reward:
Reward of 100 is awarded if the agent reached the flag (position = 0.45) on top of the mountain.
Reward is decrease based on amount of energy consumed each step.
Starting State:
The position of the car is assigned a uniform random value in
[-0.6 , -0.4].
The starting velocity of the car is always assigned to 0.
Episode Termination:
The car position is more than 0.45
Episode length is greater than 200
"""
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 30
}
def __init__(self, goal_velocity=0):
self.min_action = -1.0
self.max_action = 1.0
self.min_position = -1.2
self.max_position = 0.6
self.max_speed = 0.07
self.goal_position = 0.45 # was 0.5 in gym, 0.45 in Arnaud de Broissia's version
self.goal_velocity = goal_velocity
self.power = 0.0015
self.low_state = np.array(
[self.min_position, -self.max_speed], dtype=np.float32
)
self.high_state = np.array(
[self.max_position, self.max_speed], dtype=np.float32
)
self.viewer = None
self.action_space = spaces.Box(
low=self.min_action,
high=self.max_action,
shape=(1,),
dtype=np.float32
)
self.observation_space = spaces.Box(
low=self.low_state,
high=self.high_state,
dtype=np.float32
)
self.seed()
self.reset()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def step(self, action):
position = self.state[0]
velocity = self.state[1]
force = min(max(action[0], self.min_action), self.max_action)
velocity += force * self.power - 0.0025 * math.cos(3 * position)
if (velocity > self.max_speed): velocity = self.max_speed
if (velocity < -self.max_speed): velocity = -self.max_speed
position += velocity
if (position > self.max_position): position = self.max_position
if (position < self.min_position): position = self.min_position
if (position == self.min_position and velocity < 0): velocity = 0
# Convert a possible numpy bool to a Python bool.
done = bool(
position >= self.goal_position and velocity >= self.goal_velocity
)
reward = 0
if done:
reward = 100.0
reward -= math.pow(action[0], 2) * 0.1
self.state = np.array([position, velocity])
return self.state, reward, done, {}
def reset(self):
self.state = np.array([self.np_random.uniform(low=-0.6, high=-0.4), 0])
return np.array(self.state)
def _height(self, xs):
return np.sin(3 * xs)*.45+.55
def render(self, mode='human'):
screen_width = 600
screen_height = 400
world_width = self.max_position - self.min_position
scale = screen_width/world_width
carwidth = 40
carheight = 20
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
xs = np.linspace(self.min_position, self.max_position, 100)
ys = self._height(xs)
xys = list(zip((xs-self.min_position)*scale, ys*scale))
self.track = rendering.make_polyline(xys)
self.track.set_linewidth(4)
self.viewer.add_geom(self.track)
clearance = 10
l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0
car = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
car.add_attr(rendering.Transform(translation=(0, clearance)))
self.cartrans = rendering.Transform()
car.add_attr(self.cartrans)
self.viewer.add_geom(car)
frontwheel = rendering.make_circle(carheight / 2.5)
frontwheel.set_color(.5, .5, .5)
frontwheel.add_attr(
rendering.Transform(translation=(carwidth / 4, clearance))
)
frontwheel.add_attr(self.cartrans)
self.viewer.add_geom(frontwheel)
backwheel = rendering.make_circle(carheight / 2.5)
backwheel.add_attr(
rendering.Transform(translation=(-carwidth / 4, clearance))
)
backwheel.add_attr(self.cartrans)
backwheel.set_color(.5, .5, .5)
self.viewer.add_geom(backwheel)
flagx = (self.goal_position-self.min_position)*scale
flagy1 = self._height(self.goal_position)*scale
flagy2 = flagy1 + 50
flagpole = rendering.Line((flagx, flagy1), (flagx, flagy2))
self.viewer.add_geom(flagpole)
flag = rendering.FilledPolygon(
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)]
)
flag.set_color(.8, .8, 0)
self.viewer.add_geom(flag)
pos = self.state[0]
self.cartrans.set_translation(
(pos-self.min_position) * scale, self._height(pos) * scale
)
self.cartrans.set_rotation(math.cos(3 * pos))
return self.viewer.render(return_rgb_array=mode == 'rgb_array')
def close(self):
if self.viewer:
self.viewer.close()
self.viewer = None