2019-06-21 17:29:44 -04:00
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from multiprocessing import TimeoutError
|
2020-09-21 22:38:51 +02:00
|
|
|
from gym.spaces import Box, Tuple
|
2019-06-21 17:29:44 -04:00
|
|
|
from gym.error import (AlreadyPendingCallError, NoAsyncCallError,
|
|
|
|
ClosedEnvironmentError)
|
2020-09-21 22:38:51 +02:00
|
|
|
from gym.vector.tests.utils import (CustomSpace, make_env,
|
|
|
|
make_slow_env, make_custom_space_env)
|
2019-06-21 17:29:44 -04:00
|
|
|
|
|
|
|
from gym.vector.async_vector_env import AsyncVectorEnv
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_create_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert env.num_envs == 8
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_reset_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
observations = env.reset()
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
2019-06-28 17:46:45 -04:00
|
|
|
@pytest.mark.parametrize('use_single_action_space', [True, False])
|
|
|
|
def test_step_async_vector_env(shared_memory, use_single_action_space):
|
2019-06-21 17:29:44 -04:00
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
observations = env.reset()
|
2019-06-28 17:46:45 -04:00
|
|
|
if use_single_action_space:
|
|
|
|
actions = [env.single_action_space.sample() for _ in range(8)]
|
|
|
|
else:
|
|
|
|
actions = env.action_space.sample()
|
2019-06-21 17:29:44 -04:00
|
|
|
observations, rewards, dones, _ = env.step(actions)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
|
|
assert isinstance(rewards, np.ndarray)
|
|
|
|
assert isinstance(rewards[0], (float, np.floating))
|
|
|
|
assert rewards.ndim == 1
|
|
|
|
assert rewards.size == 8
|
|
|
|
|
|
|
|
assert isinstance(dones, np.ndarray)
|
|
|
|
assert dones.dtype == np.bool_
|
|
|
|
assert dones.ndim == 1
|
|
|
|
assert dones.size == 8
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_copy_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory,
|
|
|
|
copy=True)
|
|
|
|
observations = env.reset()
|
|
|
|
observations[0] = 128
|
|
|
|
assert not np.all(env.observations[0] == 128)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_no_copy_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory,
|
|
|
|
copy=False)
|
|
|
|
observations = env.reset()
|
|
|
|
observations[0] = 128
|
|
|
|
assert np.all(env.observations[0] == 128)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_reset_timeout_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_slow_env(0.3, i) for i in range(4)]
|
|
|
|
with pytest.raises(TimeoutError):
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
env.reset_async()
|
|
|
|
observations = env.reset_wait(timeout=0.1)
|
|
|
|
finally:
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_step_timeout_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_slow_env(0., i) for i in range(4)]
|
|
|
|
with pytest.raises(TimeoutError):
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
observations = env.reset()
|
|
|
|
env.step_async([0.1, 0.1, 0.3, 0.1])
|
|
|
|
observations, rewards, dones, _ = env.step_wait(timeout=0.1)
|
|
|
|
finally:
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.filterwarnings('ignore::UserWarning')
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_reset_out_of_order_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(4)]
|
|
|
|
with pytest.raises(NoAsyncCallError):
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
observations = env.reset_wait()
|
|
|
|
except NoAsyncCallError as exception:
|
|
|
|
assert exception.name == 'reset'
|
|
|
|
raise
|
|
|
|
finally:
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
|
|
with pytest.raises(AlreadyPendingCallError):
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
actions = env.action_space.sample()
|
|
|
|
observations = env.reset()
|
|
|
|
env.step_async(actions)
|
|
|
|
env.reset_async()
|
|
|
|
except NoAsyncCallError as exception:
|
|
|
|
assert exception.name == 'step'
|
|
|
|
raise
|
|
|
|
finally:
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.filterwarnings('ignore::UserWarning')
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_step_out_of_order_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(4)]
|
|
|
|
with pytest.raises(NoAsyncCallError):
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
actions = env.action_space.sample()
|
|
|
|
observations = env.reset()
|
|
|
|
observations, rewards, dones, infos = env.step_wait()
|
|
|
|
except AlreadyPendingCallError as exception:
|
|
|
|
assert exception.name == 'step'
|
|
|
|
raise
|
|
|
|
finally:
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
|
|
with pytest.raises(AlreadyPendingCallError):
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
actions = env.action_space.sample()
|
|
|
|
env.reset_async()
|
|
|
|
env.step_async(actions)
|
|
|
|
except AlreadyPendingCallError as exception:
|
|
|
|
assert exception.name == 'reset'
|
|
|
|
raise
|
|
|
|
finally:
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_already_closed_async_vector_env(shared_memory):
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(4)]
|
|
|
|
with pytest.raises(ClosedEnvironmentError):
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
env.close()
|
|
|
|
observations = env.reset()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('shared_memory', [True, False])
|
|
|
|
def test_check_observations_async_vector_env(shared_memory):
|
|
|
|
# CubeCrash-v0 - observation_space: Box(40, 32, 3)
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
# MemorizeDigits-v0 - observation_space: Box(24, 32, 3)
|
|
|
|
env_fns[1] = make_env('MemorizeDigits-v0', 1)
|
|
|
|
with pytest.raises(RuntimeError):
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
|
|
env.close(terminate=True)
|
2020-09-21 22:38:51 +02:00
|
|
|
|
|
|
|
|
|
|
|
def test_custom_space_async_vector_env():
|
|
|
|
env_fns = [make_custom_space_env(i) for i in range(4)]
|
|
|
|
try:
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=False)
|
|
|
|
reset_observations = env.reset()
|
|
|
|
actions = ('action-2', 'action-3', 'action-5', 'action-7')
|
|
|
|
step_observations, rewards, dones, _ = env.step(actions)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.single_observation_space, CustomSpace)
|
|
|
|
assert isinstance(env.observation_space, Tuple)
|
|
|
|
|
|
|
|
assert isinstance(reset_observations, tuple)
|
|
|
|
assert reset_observations == ('reset', 'reset', 'reset', 'reset')
|
|
|
|
|
|
|
|
assert isinstance(step_observations, tuple)
|
|
|
|
assert step_observations == ('step(action-2)', 'step(action-3)',
|
|
|
|
'step(action-5)', 'step(action-7)')
|
|
|
|
|
|
|
|
|
|
|
|
def test_custom_space_async_vector_env_shared_memory():
|
|
|
|
env_fns = [make_custom_space_env(i) for i in range(4)]
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=True)
|
|
|
|
env.close(terminate=True)
|