You can also find additional details in the accompanying [technical
report](https://arxiv.org/abs/1802.09464) and [blog
post](https://blog.openai.com/ingredients-for-robotics-research/). If
you use these environments, you can cite them as follows:
@misc{1802.09464,
Author = {Matthias Plappert and Marcin Andrychowicz and Alex Ray and Bob McGrew and Bowen Baker and Glenn Powell and Jonas Schneider and Josh Tobin and Maciek Chociej and Peter Welinder and Vikash Kumar and Wojciech Zaremba},
Title = {Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research},
Year = {2018},
Eprint = {arXiv:1802.09464},
}
### Toy text
Toy environments which are text-based. There's no extra dependency to
16 simple-to-use procedurally-generated gym environments which provide a direct measure of how quickly a reinforcement learning agent learns generalizable skills. The environments run at high speed (thousands of steps per second) on a single core.
Learn more here: https://github.com/openai/procgen
Gym Retro lets you turn classic video games into Gym environments for reinforcement learning and comes with integrations for ~1000 games. It uses various emulators that support the Libretro API, making it fairly easy to add new emulators.
The gym comes prepackaged with many many environments. It's this common API around many environments that makes Gym so great. Here we will list additional environments that do not come prepacked with the gym. Submit another to this list via a pull-request.
3D physics environments like the Mujoco environments but uses the Bullet physics engine and does not require a commercial license. Works on Mac/Linux/Windows.
Learn more here: https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.wz5to0x8kqmr
PGE is a FOSS 3D engine for AI simulations, and can interoperate with the Gym. Contains environments with modern 3D graphics, and uses Bullet for physics.
A human musculoskeletal model and a physics-based simulation environment where you can synthesize physically and physiologically accurate motion. One of the environments built in this framework is a competition environment for a NIPS 2017 challenge.
Learn more here: https://github.com/stanfordnmbl/osim-rl
MiniWorld is a minimalistic 3D interior environment simulator for reinforcement learning & robotics research. It can be used to simulate environments with rooms, doors, hallways and various objects (eg: office and home environments, mazes). MiniWorld can be seen as an alternative to VizDoom or DMLab. It is written 100% in Python and designed to be easily modified or extended.
Learn more here: https://github.com/maximecb/gym-miniworld
The environment consists of transportation puzzles in which the player's goal is to push all boxes on the warehouse's storage locations.
The advantage of the environment is that it generates a new random level every time it is initialized or reset, which prevents over fitting to predefined levels.
Learn more here: https://github.com/mpSchrader/gym-sokoban
### gym-anytrading: Environments for trading markets
AnyTrading is a collection of OpenAI Gym environments for reinforcement learning-based trading algorithms with a great focus on simplicity, flexibility, and comprehensiveness.
Learn more here: https://github.com/AminHP/gym-anytrading
### gym-electric-motor: Intelligent control of electric drives
An environment for simulating a wide variety of electric drives taking into account different types of electric motors and converters. Control schemes can be continuous, yielding a voltage duty cycle, or discrete, determining converter switching states directly.
Learn more here: https://github.com/upb-lea/gym-electric-motor
### NASGym: gym environment for Neural Architecture Search (NAS)
The environment is fully-compatible with the OpenAI baselines and exposes a NAS environment following the Neural Structure Code of [BlockQNN: Efficient Block-wise Neural Network Architecture Generation](https://arxiv.org/abs/1808.05584). Under this setting, a Neural Network (i.e. the state for the reinforcement learning agent) is modeled as a list of NSCs, an action is the addition of a layer to the network, and the reward is the accuracy after the early-stop training. The datasets considered so far are the CIFAR-10 dataset (available by default) and the meta-dataset (has to be manually downloaded as specified in [this repository](https://github.com/gomerudo/meta-dataset)).
Learn more here: https://github.com/gomerudo/nas-env
gym-jiminy presents an extension of the initial OpenAI gym for robotics using Jiminy, an extremely fast and light weight simulator for poly-articulated systems using Pinocchio for physics evaluation and Meshcat for web-based 3D rendering.
Learn more here: https://github.com/Wandercraft/jiminy
### highway-env: Tactical Decision-Making for Autonomous Driving
An environment for behavioural planning in autonomous driving, with an emphasis on high-level perception and decision rather than low-level sensing and control. The difficulty of the task lies in understanding the social interactions with other drivers, whose behaviours are uncertain. Several scenes are proposed, such as highway, merge, intersection and roundabout.
Learn more here: https://github.com/eleurent/highway-env
### gym-carla: Gym Wrapper for CARLA Driving Simulator
gym-carla provides a gym wrapper for the [CARLA simulator](http://carla.org/), which is a realistic 3D simulator for autonomous driving research. The environment includes a virtual city with several surrounding vehicles running around. Multiple source of observations are provided for the ego vehicle, such as front-view camera image, lidar point cloud image, and birdeye view semantic mask. Several applications have been developed based on this wrapper, such as deep reinforcement learning for end-to-end autonomous driving.
Learn more here: https://github.com/cjy1992/gym-carla
### openmodelica-microgrid-gym: Intelligent control of microgrids
The OpenModelica Microgrid Gym (OMG) package is a software toolbox for the simulation and control optimization of microgrids based on energy conversion by power electronic converters.
Learn more here: https://github.com/upb-lea/openmodelica-microgrid-gym