Files
Gymnasium/gym/vector/tests/utils.py

123 lines
3.0 KiB
Python
Raw Normal View History

import numpy as np
import gym
import time
from gym.spaces import Box, Discrete, MultiDiscrete, MultiBinary, Tuple, Dict
spaces = [
2021-07-29 02:26:34 +02:00
Box(low=np.array(-1.0), high=np.array(1.0), dtype=np.float64),
Box(low=np.array([0.0]), high=np.array([10.0]), dtype=np.float32),
2021-07-29 15:39:42 -04:00
Box(
low=np.array([-1.0, 0.0, 0.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float32
),
Box(
low=np.array([[-1.0, 0.0], [0.0, -1.0]]), high=np.ones((2, 2)), dtype=np.float32
),
Box(low=0, high=255, shape=(), dtype=np.uint8),
Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8),
Discrete(2),
Tuple((Discrete(3), Discrete(5))),
2021-07-29 02:26:34 +02:00
Tuple(
(
Discrete(7),
Box(low=np.array([0.0, -1.0]), high=np.array([1.0, 1.0]), dtype=np.float32),
)
),
MultiDiscrete([11, 13, 17]),
MultiBinary(19),
2021-07-29 02:26:34 +02:00
Dict(
{
"position": Discrete(23),
2021-07-29 15:39:42 -04:00
"velocity": Box(
low=np.array([0.0]), high=np.array([1.0]), dtype=np.float32
),
2021-07-29 02:26:34 +02:00
}
),
Dict(
{
"position": Dict({"x": Discrete(29), "y": Discrete(31)}),
2021-07-29 15:39:42 -04:00
"velocity": Tuple(
(Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8))
),
2021-07-29 02:26:34 +02:00
}
),
]
HEIGHT, WIDTH = 64, 64
2021-07-29 02:26:34 +02:00
class UnittestSlowEnv(gym.Env):
def __init__(self, slow_reset=0.3):
super(UnittestSlowEnv, self).__init__()
self.slow_reset = slow_reset
2021-07-29 15:39:42 -04:00
self.observation_space = Box(
low=0, high=255, shape=(HEIGHT, WIDTH, 3), dtype=np.uint8
)
2021-07-29 02:26:34 +02:00
self.action_space = Box(low=0.0, high=1.0, shape=(), dtype=np.float32)
def reset(self):
if self.slow_reset > 0:
time.sleep(self.slow_reset)
return self.observation_space.sample()
def step(self, action):
time.sleep(action)
observation = self.observation_space.sample()
2021-07-29 02:26:34 +02:00
reward, done = 0.0, False
return observation, reward, done, {}
2021-07-29 02:26:34 +02:00
class CustomSpace(gym.Space):
"""Minimal custom observation space."""
2021-07-29 02:26:34 +02:00
def __eq__(self, other):
return isinstance(other, CustomSpace)
2021-07-29 02:26:34 +02:00
custom_spaces = [
CustomSpace(),
2021-07-29 02:26:34 +02:00
Tuple((CustomSpace(), Box(low=0, high=255, shape=(), dtype=np.uint8))),
]
2021-07-29 02:26:34 +02:00
class CustomSpaceEnv(gym.Env):
def __init__(self):
super(CustomSpaceEnv, self).__init__()
self.observation_space = CustomSpace()
self.action_space = CustomSpace()
def reset(self):
2021-07-29 02:26:34 +02:00
return "reset"
def step(self, action):
2021-07-29 02:26:34 +02:00
observation = "step({0:s})".format(action)
reward, done = 0.0, False
return observation, reward, done, {}
2021-07-29 02:26:34 +02:00
def make_env(env_name, seed):
def _make():
env = gym.make(env_name)
env.seed(seed)
return env
2021-07-29 02:26:34 +02:00
return _make
2021-07-29 02:26:34 +02:00
def make_slow_env(slow_reset, seed):
def _make():
env = UnittestSlowEnv(slow_reset=slow_reset)
env.seed(seed)
return env
2021-07-29 02:26:34 +02:00
return _make
2021-07-29 02:26:34 +02:00
def make_custom_space_env(seed):
def _make():
env = CustomSpaceEnv()
env.seed(seed)
return env
2021-07-29 02:26:34 +02:00
return _make