Files
Gymnasium/gym/spaces/utils.py

70 lines
2.5 KiB
Python
Raw Normal View History

import numpy as np
from gym.spaces import Box
from gym.spaces import Discrete
from gym.spaces import MultiDiscrete
from gym.spaces import MultiBinary
from gym.spaces import Tuple
from gym.spaces import Dict
def flatdim(space):
if isinstance(space, Box):
return int(np.prod(space.shape))
elif isinstance(space, Discrete):
return int(space.n)
elif isinstance(space, Tuple):
return int(sum([flatdim(s) for s in space.spaces]))
elif isinstance(space, Dict):
return int(sum([flatdim(s) for s in space.spaces.values()]))
elif isinstance(space, MultiBinary):
return int(space.n)
elif isinstance(space, MultiDiscrete):
return int(np.prod(space.shape))
else:
raise NotImplementedError
def flatten(space, x):
if isinstance(space, Box):
return np.asarray(x, dtype=np.float32).flatten()
elif isinstance(space, Discrete):
onehot = np.zeros(space.n, dtype=np.float32)
onehot[x] = 1.0
return onehot
elif isinstance(space, Tuple):
return np.concatenate([flatten(s, x_part) for x_part, s in zip(x, space.spaces)])
elif isinstance(space, Dict):
return np.concatenate([flatten(s, x[key]) for key, s in space.spaces.items()])
elif isinstance(space, MultiBinary):
return np.asarray(x).flatten()
elif isinstance(space, MultiDiscrete):
return np.asarray(x).flatten()
else:
raise NotImplementedError
def unflatten(space, x):
if isinstance(space, Box):
return np.asarray(x, dtype=np.float32).reshape(space.shape)
elif isinstance(space, Discrete):
return int(np.nonzero(x)[0][0])
elif isinstance(space, Tuple):
dims = [flatdim(s) for s in space.spaces]
list_flattened = np.split(x, np.cumsum(dims)[:-1])
list_unflattened = [unflatten(s, flattened)
for flattened, s in zip(list_flattened, space.spaces)]
return tuple(list_unflattened)
elif isinstance(space, Dict):
dims = [flatdim(s) for s in space.spaces.values()]
list_flattened = np.split(x, np.cumsum(dims)[:-1])
list_unflattened = [(key, unflatten(s, flattened))
for flattened, (key, s) in zip(list_flattened, space.spaces.items())]
return dict(list_unflattened)
elif isinstance(space, MultiBinary):
return np.asarray(x).reshape(space.shape)
elif isinstance(space, MultiDiscrete):
return np.asarray(x).reshape(space.shape)
else:
raise NotImplementedError