2019-06-21 17:29:44 -04:00
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from gym.spaces import Box
|
|
|
|
from gym.vector.tests.utils import make_env
|
|
|
|
|
|
|
|
from gym.vector.sync_vector_env import SyncVectorEnv
|
|
|
|
|
|
|
|
def test_create_sync_vector_env():
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert env.num_envs == 8
|
|
|
|
|
|
|
|
|
|
|
|
def test_reset_sync_vector_env():
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
observations = env.reset()
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
|
|
|
2019-06-28 17:46:45 -04:00
|
|
|
@pytest.mark.parametrize('use_single_action_space', [True, False])
|
|
|
|
def test_step_sync_vector_env(use_single_action_space):
|
2019-06-21 17:29:44 -04:00
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
observations = env.reset()
|
2019-06-28 17:46:45 -04:00
|
|
|
if use_single_action_space:
|
|
|
|
actions = [env.single_action_space.sample() for _ in range(8)]
|
|
|
|
else:
|
|
|
|
actions = env.action_space.sample()
|
2019-06-21 17:29:44 -04:00
|
|
|
observations, rewards, dones, _ = env.step(actions)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
|
|
assert isinstance(rewards, np.ndarray)
|
|
|
|
assert isinstance(rewards[0], (float, np.floating))
|
|
|
|
assert rewards.ndim == 1
|
|
|
|
assert rewards.size == 8
|
|
|
|
|
|
|
|
assert isinstance(dones, np.ndarray)
|
|
|
|
assert dones.dtype == np.bool_
|
|
|
|
assert dones.ndim == 1
|
|
|
|
assert dones.size == 8
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_observations_sync_vector_env():
|
|
|
|
# CubeCrash-v0 - observation_space: Box(40, 32, 3)
|
|
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
|
|
# MemorizeDigits-v0 - observation_space: Box(24, 32, 3)
|
|
|
|
env_fns[1] = make_env('MemorizeDigits-v0', 1)
|
|
|
|
with pytest.raises(RuntimeError):
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
env.close()
|