Files
Gymnasium/docs/api/env.md

80 lines
2.4 KiB
Markdown
Raw Normal View History

---
title: Utils
---
# Env
## gymnasium.Env
```{eval-rst}
.. autoclass:: gymnasium.Env
```
### Methods
```{eval-rst}
.. autofunction:: gymnasium.Env.step
.. autofunction:: gymnasium.Env.reset
.. autofunction:: gymnasium.Env.render
```
### Attributes
```{eval-rst}
.. autoattribute:: gymnasium.Env.action_space
The Space object corresponding to valid actions, all valid actions should be contained with the space. For example, if the action space is of type `Discrete` and gives the value `Discrete(2)`, this means there are two valid discrete actions: 0 & 1.
.. code::
>>> env.action_space
Discrete(2)
>>> env.observation_space
Box(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)
.. autoattribute:: gymnasium.Env.observation_space
The Space object corresponding to valid observations, all valid observations should be contained with the space. For example, if the observation space is of type :class:`Box` and the shape of the object is ``(4,)``, this denotes a valid observation will be an array of 4 numbers. We can check the box bounds as well with attributes.
.. code::
>>> env.observation_space.high
array([4.8000002e+00, 3.4028235e+38, 4.1887903e-01, 3.4028235e+38], dtype=float32)
>>> env.observation_space.low
array([-4.8000002e+00, -3.4028235e+38, -4.1887903e-01, -3.4028235e+38], dtype=float32)
.. autoattribute:: gymnasium.Env.metadata
The metadata of the environment containing rendering modes, rendering fps, etc
.. autoattribute:: gymnasium.Env.render_mode
The render mode of the environment determined at initialisation
.. autoattribute:: gymnasium.Env.reward_range
A tuple corresponding to the minimum and maximum possible rewards for an agent over an episode. The default reward range is set to :math:`(-\infty,+\infty)`.
.. autoattribute:: gymnasium.Env.spec
The ``EnvSpec`` of the environment normally set during :py:meth:`gymnasium.make`
```
### Additional Methods
```{eval-rst}
.. autofunction:: gymnasium.Env.close
.. autoproperty:: gymnasium.Env.unwrapped
.. autoproperty:: gymnasium.Env.np_random
```
### Implementing environments
```{eval-rst}
.. py:currentmodule:: gymnasium
When implementing an environment, the :meth:Env.reset and :meth:`Env.step` functions much be created describing the
dynamics of the environment.
For more information see the environment creation tutorial.
```