mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-16 11:39:13 +00:00
80 lines
2.4 KiB
Markdown
80 lines
2.4 KiB
Markdown
![]() |
---
|
||
|
title: Utils
|
||
|
---
|
||
|
|
||
|
# Env
|
||
|
|
||
|
## gymnasium.Env
|
||
|
|
||
|
```{eval-rst}
|
||
|
.. autoclass:: gymnasium.Env
|
||
|
```
|
||
|
|
||
|
### Methods
|
||
|
|
||
|
```{eval-rst}
|
||
|
.. autofunction:: gymnasium.Env.step
|
||
|
.. autofunction:: gymnasium.Env.reset
|
||
|
.. autofunction:: gymnasium.Env.render
|
||
|
```
|
||
|
|
||
|
### Attributes
|
||
|
|
||
|
```{eval-rst}
|
||
|
.. autoattribute:: gymnasium.Env.action_space
|
||
|
|
||
|
The Space object corresponding to valid actions, all valid actions should be contained with the space. For example, if the action space is of type `Discrete` and gives the value `Discrete(2)`, this means there are two valid discrete actions: 0 & 1.
|
||
|
|
||
|
.. code::
|
||
|
|
||
|
>>> env.action_space
|
||
|
Discrete(2)
|
||
|
>>> env.observation_space
|
||
|
Box(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)
|
||
|
|
||
|
.. autoattribute:: gymnasium.Env.observation_space
|
||
|
|
||
|
The Space object corresponding to valid observations, all valid observations should be contained with the space. For example, if the observation space is of type :class:`Box` and the shape of the object is ``(4,)``, this denotes a valid observation will be an array of 4 numbers. We can check the box bounds as well with attributes.
|
||
|
|
||
|
.. code::
|
||
|
|
||
|
>>> env.observation_space.high
|
||
|
array([4.8000002e+00, 3.4028235e+38, 4.1887903e-01, 3.4028235e+38], dtype=float32)
|
||
|
>>> env.observation_space.low
|
||
|
array([-4.8000002e+00, -3.4028235e+38, -4.1887903e-01, -3.4028235e+38], dtype=float32)
|
||
|
|
||
|
.. autoattribute:: gymnasium.Env.metadata
|
||
|
|
||
|
The metadata of the environment containing rendering modes, rendering fps, etc
|
||
|
|
||
|
.. autoattribute:: gymnasium.Env.render_mode
|
||
|
|
||
|
The render mode of the environment determined at initialisation
|
||
|
|
||
|
.. autoattribute:: gymnasium.Env.reward_range
|
||
|
|
||
|
A tuple corresponding to the minimum and maximum possible rewards for an agent over an episode. The default reward range is set to :math:`(-\infty,+\infty)`.
|
||
|
|
||
|
.. autoattribute:: gymnasium.Env.spec
|
||
|
|
||
|
The ``EnvSpec`` of the environment normally set during :py:meth:`gymnasium.make`
|
||
|
```
|
||
|
|
||
|
### Additional Methods
|
||
|
|
||
|
```{eval-rst}
|
||
|
.. autofunction:: gymnasium.Env.close
|
||
|
.. autoproperty:: gymnasium.Env.unwrapped
|
||
|
.. autoproperty:: gymnasium.Env.np_random
|
||
|
```
|
||
|
|
||
|
### Implementing environments
|
||
|
|
||
|
```{eval-rst}
|
||
|
.. py:currentmodule:: gymnasium
|
||
|
|
||
|
When implementing an environment, the :meth:Env.reset and :meth:`Env.step` functions much be created describing the
|
||
|
dynamics of the environment.
|
||
|
For more information see the environment creation tutorial.
|
||
|
```
|