2019-10-11 23:58:04 +02:00
|
|
|
import pytest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import gym
|
|
|
|
from gym.wrappers import TransformObservation
|
|
|
|
|
|
|
|
|
2021-09-25 20:00:28 +02:00
|
|
|
@pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"])
|
2019-10-11 23:58:04 +02:00
|
|
|
def test_transform_observation(env_id):
|
2021-07-29 02:26:34 +02:00
|
|
|
affine_transform = lambda x: 3 * x + 2
|
2019-10-11 23:58:04 +02:00
|
|
|
env = gym.make(env_id)
|
2021-07-29 15:39:42 -04:00
|
|
|
wrapped_env = TransformObservation(
|
|
|
|
gym.make(env_id), lambda obs: affine_transform(obs)
|
|
|
|
)
|
2019-10-11 23:58:04 +02:00
|
|
|
|
|
|
|
env.seed(0)
|
|
|
|
wrapped_env.seed(0)
|
|
|
|
|
|
|
|
obs = env.reset()
|
|
|
|
wrapped_obs = wrapped_env.reset()
|
|
|
|
assert np.allclose(wrapped_obs, affine_transform(obs))
|
|
|
|
|
|
|
|
action = env.action_space.sample()
|
|
|
|
obs, reward, done, _ = env.step(action)
|
|
|
|
wrapped_obs, wrapped_reward, wrapped_done, _ = wrapped_env.step(action)
|
|
|
|
assert np.allclose(wrapped_obs, affine_transform(obs))
|
|
|
|
assert np.allclose(wrapped_reward, reward)
|
|
|
|
assert wrapped_done == done
|