2023-02-12 07:49:37 -05:00
|
|
|
import pytest
|
|
|
|
|
2023-04-25 03:47:51 -07:00
|
|
|
|
|
|
|
jax = pytest.importorskip("jax")
|
|
|
|
import jax.numpy as jnp # noqa: E402
|
|
|
|
import jax.random as jrng # noqa: E402
|
|
|
|
import numpy as np # noqa: E402
|
|
|
|
|
|
|
|
from gymnasium.envs.phys2d.cartpole import CartPoleFunctional # noqa: E402
|
|
|
|
from gymnasium.envs.phys2d.pendulum import PendulumFunctional # noqa: E402
|
2023-02-12 07:49:37 -05:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("env_class", [CartPoleFunctional, PendulumFunctional])
|
|
|
|
def test_normal(env_class):
|
|
|
|
env = env_class()
|
|
|
|
rng = jrng.PRNGKey(0)
|
|
|
|
|
|
|
|
state = env.initial(rng)
|
|
|
|
env.action_space.seed(0)
|
|
|
|
|
|
|
|
for t in range(10):
|
|
|
|
obs = env.observation(state)
|
|
|
|
action = env.action_space.sample()
|
|
|
|
next_state = env.transition(state, action, None)
|
|
|
|
reward = env.reward(state, action, next_state)
|
|
|
|
terminal = env.terminal(next_state)
|
|
|
|
|
|
|
|
assert next_state.shape == state.shape
|
|
|
|
try:
|
|
|
|
float(reward)
|
|
|
|
except ValueError:
|
|
|
|
pytest.fail("Reward is not castable to float")
|
|
|
|
try:
|
|
|
|
bool(terminal)
|
|
|
|
except ValueError:
|
|
|
|
pytest.fail("Terminal is not castable to bool")
|
|
|
|
|
|
|
|
assert next_state.dtype == jnp.float32
|
2023-07-03 23:53:57 +02:00
|
|
|
assert isinstance(obs, jax.Array)
|
2023-02-12 07:49:37 -05:00
|
|
|
assert obs.dtype == jnp.float32
|
|
|
|
|
|
|
|
state = next_state
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("env_class", [CartPoleFunctional, PendulumFunctional])
|
|
|
|
def test_jit(env_class):
|
|
|
|
env = env_class()
|
|
|
|
rng = jrng.PRNGKey(0)
|
|
|
|
|
|
|
|
env.transform(jax.jit)
|
|
|
|
state = env.initial(rng)
|
|
|
|
env.action_space.seed(0)
|
|
|
|
|
|
|
|
for t in range(10):
|
|
|
|
obs = env.observation(state)
|
|
|
|
action = env.action_space.sample()
|
|
|
|
next_state = env.transition(state, action, None)
|
|
|
|
reward = env.reward(state, action, next_state)
|
|
|
|
terminal = env.terminal(next_state)
|
|
|
|
|
|
|
|
assert next_state.shape == state.shape
|
|
|
|
try:
|
|
|
|
float(reward)
|
|
|
|
except ValueError:
|
|
|
|
pytest.fail("Reward is not castable to float")
|
|
|
|
try:
|
|
|
|
bool(terminal)
|
|
|
|
except ValueError:
|
|
|
|
pytest.fail("Terminal is not castable to bool")
|
|
|
|
|
|
|
|
assert next_state.dtype == jnp.float32
|
2023-07-03 23:53:57 +02:00
|
|
|
assert isinstance(obs, jax.Array)
|
2023-02-12 07:49:37 -05:00
|
|
|
assert obs.dtype == jnp.float32
|
|
|
|
|
|
|
|
state = next_state
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("env_class", [CartPoleFunctional, PendulumFunctional])
|
|
|
|
def test_vmap(env_class):
|
|
|
|
env = env_class()
|
|
|
|
num_envs = 10
|
|
|
|
rng = jrng.split(jrng.PRNGKey(0), num_envs)
|
|
|
|
|
|
|
|
env.transform(jax.vmap)
|
|
|
|
env.transform(jax.jit)
|
|
|
|
state = env.initial(rng)
|
|
|
|
env.action_space.seed(0)
|
|
|
|
|
|
|
|
for t in range(10):
|
|
|
|
obs = env.observation(state)
|
|
|
|
action = jnp.array([env.action_space.sample() for _ in range(num_envs)])
|
|
|
|
# if isinstance(env.action_space, Discrete):
|
|
|
|
# action = action.reshape((num_envs, 1))
|
|
|
|
next_state = env.transition(state, action, None)
|
|
|
|
terminal = env.terminal(next_state)
|
|
|
|
reward = env.reward(state, action, next_state)
|
|
|
|
|
|
|
|
assert next_state.shape == state.shape
|
|
|
|
assert next_state.dtype == jnp.float32
|
|
|
|
assert reward.shape == (num_envs,)
|
|
|
|
assert reward.dtype == jnp.float32
|
|
|
|
assert terminal.shape == (num_envs,)
|
|
|
|
assert terminal.dtype == np.bool_
|
2023-07-03 23:53:57 +02:00
|
|
|
assert isinstance(obs, jax.Array)
|
2023-02-12 07:49:37 -05:00
|
|
|
assert obs.dtype == jnp.float32
|
|
|
|
|
|
|
|
state = next_state
|