Files
Gymnasium/gymnasium/experimental/vector/utils/shared_memory.py

182 lines
6.3 KiB
Python
Raw Normal View History

"""Utility functions for vector environments to share memory between processes."""
from __future__ import annotations
import multiprocessing as mp
from collections import OrderedDict
from ctypes import c_bool
from functools import singledispatch
import numpy as np
from gymnasium.error import CustomSpaceError
from gymnasium.spaces import (
Box,
Dict,
Discrete,
MultiBinary,
MultiDiscrete,
Space,
Tuple,
)
__all__ = ["create_shared_memory", "read_from_shared_memory", "write_to_shared_memory"]
@singledispatch
def create_shared_memory(space: Space, n: int = 1, ctx=mp) -> dict | tuple | mp.Array:
"""Create a shared memory object, to be shared across processes.
This eventually contains the observations from the vectorized environment.
Args:
space: Observation space of a single environment in the vectorized environment.
n: Number of environments in the vectorized environment (i.e. the number of processes).
ctx: The multiprocess module
Returns:
shared_memory for the shared object across processes.
Raises:
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
"""
raise CustomSpaceError(
f"Cannot create a shared memory for space with type `{type(space)}`. "
"`create_shared_memory` only supports by default built-in Gymnasium spaces, register function for custom space."
)
@create_shared_memory.register(Box)
@create_shared_memory.register(Discrete)
@create_shared_memory.register(MultiDiscrete)
@create_shared_memory.register(MultiBinary)
def _create_base_shared_memory(space, n: int = 1, ctx=mp):
dtype = space.dtype.char
if dtype in "?":
dtype = c_bool
return ctx.Array(dtype, n * int(np.prod(space.shape)))
@create_shared_memory.register(Tuple)
def _create_tuple_shared_memory(space, n: int = 1, ctx=mp):
return tuple(
create_shared_memory(subspace, n=n, ctx=ctx) for subspace in space.spaces
)
@create_shared_memory.register(Dict)
def _create_dict_shared_memory(space, n=1, ctx=mp):
return OrderedDict(
[
(key, create_shared_memory(subspace, n=n, ctx=ctx))
for (key, subspace) in space.spaces.items()
]
)
@singledispatch
def read_from_shared_memory(
space: Space, shared_memory: dict | tuple | mp.Array, n: int = 1
) -> dict | tuple | np.ndarray:
"""Read the batch of observations from shared memory as a numpy array.
..notes::
The numpy array objects returned by `read_from_shared_memory` shares the
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
Args:
space: Observation space of a single environment in the vectorized environment.
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
This object is created with `create_shared_memory`.
n: Number of environments in the vectorized environment (i.e. the number of processes).
Returns:
Batch of observations as a (possibly nested) numpy array.
Raises:
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
"""
raise CustomSpaceError(
f"Cannot read from a shared memory for space with type `{type(space)}`. "
"`read_from_shared_memory` only supports by default built-in Gymnasium spaces, register function for custom space."
)
@read_from_shared_memory.register(Box)
@read_from_shared_memory.register(Discrete)
@read_from_shared_memory.register(MultiDiscrete)
@read_from_shared_memory.register(MultiBinary)
def _read_base_from_shared_memory(space, shared_memory, n: int = 1):
return np.frombuffer(shared_memory.get_obj(), dtype=space.dtype).reshape(
(n,) + space.shape
)
@read_from_shared_memory.register(Tuple)
def _read_tuple_from_shared_memory(space, shared_memory, n: int = 1):
return tuple(
read_from_shared_memory(subspace, memory, n=n)
for (memory, subspace) in zip(shared_memory, space.spaces)
)
@read_from_shared_memory.register(Dict)
def _read_dict_from_shared_memory(space, shared_memory, n: int = 1):
return OrderedDict(
[
(key, read_from_shared_memory(subspace, shared_memory[key], n=n))
for (key, subspace) in space.spaces.items()
]
)
@singledispatch
def write_to_shared_memory(
space: Space,
index: int,
value: np.ndarray,
shared_memory: dict | tuple | mp.Array,
):
"""Write the observation of a single environment into shared memory.
Args:
space: Observation space of a single environment in the vectorized environment.
index: Index of the environment (must be in `[0, num_envs)`).
value: Observation of the single environment to write to shared memory.
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
This object is created with `create_shared_memory`.
Raises:
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
"""
raise CustomSpaceError(
f"Cannot write to a shared memory for space with type `{type(space)}`. "
"`write_to_shared_memory` only supports by default built-in Gymnasium spaces, register function for custom space."
)
@write_to_shared_memory.register(Box)
@write_to_shared_memory.register(Discrete)
@write_to_shared_memory.register(MultiDiscrete)
@write_to_shared_memory.register(MultiBinary)
def _write_base_to_shared_memory(space, index, value, shared_memory):
size = int(np.prod(space.shape))
destination = np.frombuffer(shared_memory.get_obj(), dtype=space.dtype)
np.copyto(
destination[index * size : (index + 1) * size],
np.asarray(value, dtype=space.dtype).flatten(),
)
@write_to_shared_memory.register(Tuple)
def _write_tuple_to_shared_memory(space, index, values, shared_memory):
for value, memory, subspace in zip(values, shared_memory, space.spaces):
write_to_shared_memory(subspace, index, value, memory)
@write_to_shared_memory.register(Dict)
def _write_dict_to_shared_memory(space, index, values, shared_memory):
for key, subspace in space.spaces.items():
write_to_shared_memory(subspace, index, values[key], shared_memory[key])