Files
Gymnasium/gym/vector/async_vector_env.py

480 lines
17 KiB
Python
Raw Normal View History

import numpy as np
import multiprocessing as mp
import time
import sys
from enum import Enum
from copy import deepcopy
from gym import logger
from gym.vector.vector_env import VectorEnv
2021-07-29 02:26:34 +02:00
from gym.error import (
AlreadyPendingCallError,
NoAsyncCallError,
ClosedEnvironmentError,
CustomSpaceError,
)
from gym.vector.utils import (
create_shared_memory,
create_empty_array,
write_to_shared_memory,
read_from_shared_memory,
concatenate,
CloudpickleWrapper,
clear_mpi_env_vars,
)
__all__ = ["AsyncVectorEnv"]
class AsyncState(Enum):
2021-07-29 02:26:34 +02:00
DEFAULT = "default"
WAITING_RESET = "reset"
WAITING_STEP = "step"
class AsyncVectorEnv(VectorEnv):
"""Vectorized environment that runs multiple environments in parallel. It
uses `multiprocessing` processes, and pipes for communication.
Parameters
----------
env_fns : iterable of callable
Functions that create the environments.
observation_space : `gym.spaces.Space` instance, optional
Observation space of a single environment. If `None`, then the
observation space of the first environment is taken.
action_space : `gym.spaces.Space` instance, optional
Action space of a single environment. If `None`, then the action space
of the first environment is taken.
shared_memory : bool (default: `True`)
If `True`, then the observations from the worker processes are
communicated back through shared variables. This can improve the
efficiency if the observations are large (e.g. images).
copy : bool (default: `True`)
If `True`, then the `reset` and `step` methods return a copy of the
observations.
context : str, optional
Context for multiprocessing. If `None`, then the default context is used.
Only available in Python 3.
daemon : bool (default: `True`)
If `True`, then subprocesses have `daemon` flag turned on; that is, they
will quit if the head process quits. However, `daemon=True` prevents
subprocesses to spawn children, so for some environments you may want
to have it set to `False`
worker : function, optional
WARNING - advanced mode option! If set, then use that worker in a subprocess
instead of a default one. Can be useful to override some inner vector env
logic, for instance, how resets on done are handled. Provides high
degree of flexibility and a high chance to shoot yourself in the foot; thus,
if you are writing your own worker, it is recommended to start from the code
for `_worker` (or `_worker_shared_memory`) method below, and add changes
"""
2021-07-29 02:26:34 +02:00
def __init__(
self,
env_fns,
observation_space=None,
action_space=None,
shared_memory=True,
copy=True,
context=None,
daemon=True,
worker=None,
):
ctx = mp.get_context(context)
self.env_fns = env_fns
self.shared_memory = shared_memory
self.copy = copy
dummy_env = env_fns[0]()
self.metadata = dummy_env.metadata
if (observation_space is None) or (action_space is None):
observation_space = observation_space or dummy_env.observation_space
action_space = action_space or dummy_env.action_space
dummy_env.close()
del dummy_env
2021-07-29 02:26:34 +02:00
super(AsyncVectorEnv, self).__init__(
num_envs=len(env_fns),
observation_space=observation_space,
action_space=action_space,
)
if self.shared_memory:
try:
2021-07-29 15:39:42 -04:00
_obs_buffer = create_shared_memory(
self.single_observation_space, n=self.num_envs, ctx=ctx
)
self.observations = read_from_shared_memory(
_obs_buffer, self.single_observation_space, n=self.num_envs
)
except CustomSpaceError:
2021-07-29 02:26:34 +02:00
raise ValueError(
"Using `shared_memory=True` in `AsyncVectorEnv` "
"is incompatible with non-standard Gym observation spaces "
"(i.e. custom spaces inheriting from `gym.Space`), and is "
"only compatible with default Gym spaces (e.g. `Box`, "
"`Tuple`, `Dict`) for batching. Set `shared_memory=False` "
"if you use custom observation spaces."
)
else:
_obs_buffer = None
2021-07-29 15:39:42 -04:00
self.observations = create_empty_array(
self.single_observation_space, n=self.num_envs, fn=np.zeros
)
self.parent_pipes, self.processes = [], []
self.error_queue = ctx.Queue()
target = _worker_shared_memory if self.shared_memory else _worker
target = worker or target
with clear_mpi_env_vars():
for idx, env_fn in enumerate(self.env_fns):
parent_pipe, child_pipe = ctx.Pipe()
2021-07-29 02:26:34 +02:00
process = ctx.Process(
target=target,
name="Worker<{0}>-{1}".format(type(self).__name__, idx),
args=(
idx,
CloudpickleWrapper(env_fn),
child_pipe,
parent_pipe,
_obs_buffer,
self.error_queue,
),
)
self.parent_pipes.append(parent_pipe)
self.processes.append(process)
process.daemon = daemon
process.start()
child_pipe.close()
self._state = AsyncState.DEFAULT
self._check_observation_spaces()
def seed(self, seeds=None):
self._assert_is_running()
if seeds is None:
seeds = [None for _ in range(self.num_envs)]
if isinstance(seeds, int):
seeds = [seeds + i for i in range(self.num_envs)]
assert len(seeds) == self.num_envs
if self._state != AsyncState.DEFAULT:
2021-07-29 02:26:34 +02:00
raise AlreadyPendingCallError(
2021-07-29 15:39:42 -04:00
"Calling `seed` while waiting "
"for a pending call to `{0}` to complete.".format(self._state.value),
2021-07-29 02:26:34 +02:00
self._state.value,
)
for pipe, seed in zip(self.parent_pipes, seeds):
2021-07-29 02:26:34 +02:00
pipe.send(("seed", seed))
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
def reset_async(self):
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
2021-07-29 02:26:34 +02:00
raise AlreadyPendingCallError(
2021-07-29 15:39:42 -04:00
"Calling `reset_async` while waiting "
"for a pending call to `{0}` to complete".format(self._state.value),
2021-07-29 02:26:34 +02:00
self._state.value,
)
for pipe in self.parent_pipes:
2021-07-29 02:26:34 +02:00
pipe.send(("reset", None))
self._state = AsyncState.WAITING_RESET
def reset_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `reset_wait` times out. If
`None`, the call to `reset_wait` never times out.
Returns
-------
observations : sample from `observation_space`
A batch of observations from the vectorized environment.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_RESET:
2021-07-29 02:26:34 +02:00
raise NoAsyncCallError(
"Calling `reset_wait` without any prior " "call to `reset_async`.",
AsyncState.WAITING_RESET.value,
)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
2021-07-29 02:26:34 +02:00
raise mp.TimeoutError(
2021-07-29 15:39:42 -04:00
"The call to `reset_wait` has timed out after "
"{0} second{1}.".format(timeout, "s" if timeout > 1 else "")
2021-07-29 02:26:34 +02:00
)
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
if not self.shared_memory:
2021-07-29 15:39:42 -04:00
self.observations = concatenate(
results, self.observations, self.single_observation_space
)
return deepcopy(self.observations) if self.copy else self.observations
def step_async(self, actions):
"""
Parameters
----------
actions : iterable of samples from `action_space`
List of actions.
"""
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
2021-07-29 02:26:34 +02:00
raise AlreadyPendingCallError(
2021-07-29 15:39:42 -04:00
"Calling `step_async` while waiting "
"for a pending call to `{0}` to complete.".format(self._state.value),
2021-07-29 02:26:34 +02:00
self._state.value,
)
for pipe, action in zip(self.parent_pipes, actions):
2021-07-29 02:26:34 +02:00
pipe.send(("step", action))
self._state = AsyncState.WAITING_STEP
def step_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `step_wait` times out. If
`None`, the call to `step_wait` never times out.
Returns
-------
observations : sample from `observation_space`
A batch of observations from the vectorized environment.
rewards : `np.ndarray` instance (dtype `np.float_`)
A vector of rewards from the vectorized environment.
dones : `np.ndarray` instance (dtype `np.bool_`)
A vector whose entries indicate whether the episode has ended.
infos : list of dict
A list of auxiliary diagnostic information.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_STEP:
2021-07-29 02:26:34 +02:00
raise NoAsyncCallError(
"Calling `step_wait` without any prior call " "to `step_async`.",
AsyncState.WAITING_STEP.value,
)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
2021-07-29 02:26:34 +02:00
raise mp.TimeoutError(
2021-07-29 15:39:42 -04:00
"The call to `step_wait` has timed out after "
"{0} second{1}.".format(timeout, "s" if timeout > 1 else "")
2021-07-29 02:26:34 +02:00
)
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
observations_list, rewards, dones, infos = zip(*results)
if not self.shared_memory:
2021-07-29 15:39:42 -04:00
self.observations = concatenate(
observations_list, self.observations, self.single_observation_space
)
2021-07-29 02:26:34 +02:00
return (
deepcopy(self.observations) if self.copy else self.observations,
np.array(rewards),
np.array(dones, dtype=np.bool_),
infos,
)
def close_extras(self, timeout=None, terminate=False):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `close` times out. If `None`,
the call to `close` never times out. If the call to `close` times
out, then all processes are terminated.
terminate : bool (default: `False`)
If `True`, then the `close` operation is forced and all processes
are terminated.
"""
timeout = 0 if terminate else timeout
try:
if self._state != AsyncState.DEFAULT:
2021-07-29 02:26:34 +02:00
logger.warn(
2021-07-29 15:39:42 -04:00
"Calling `close` while waiting for a pending "
"call to `{0}` to complete.".format(self._state.value)
2021-07-29 02:26:34 +02:00
)
function = getattr(self, "{0}_wait".format(self._state.value))
function(timeout)
except mp.TimeoutError:
terminate = True
if terminate:
for process in self.processes:
if process.is_alive():
process.terminate()
else:
for pipe in self.parent_pipes:
if (pipe is not None) and (not pipe.closed):
2021-07-29 02:26:34 +02:00
pipe.send(("close", None))
for pipe in self.parent_pipes:
if (pipe is not None) and (not pipe.closed):
pipe.recv()
for pipe in self.parent_pipes:
if pipe is not None:
pipe.close()
for process in self.processes:
process.join()
def _poll(self, timeout=None):
self._assert_is_running()
if timeout is None:
return True
end_time = time.time() + timeout
delta = None
for pipe in self.parent_pipes:
delta = max(end_time - time.time(), 0)
if pipe is None:
return False
if pipe.closed or (not pipe.poll(delta)):
return False
return True
def _check_observation_spaces(self):
self._assert_is_running()
for pipe in self.parent_pipes:
2021-07-29 02:26:34 +02:00
pipe.send(("_check_observation_space", self.single_observation_space))
same_spaces, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
if not all(same_spaces):
2021-07-29 02:26:34 +02:00
raise RuntimeError(
"Some environments have an observation space "
"different from `{0}`. In order to batch observations, the "
"observation spaces from all environments must be "
"equal.".format(self.single_observation_space)
)
def _assert_is_running(self):
if self.closed:
2021-07-29 02:26:34 +02:00
raise ClosedEnvironmentError(
2021-07-29 15:39:42 -04:00
"Trying to operate on `{0}`, after a "
"call to `close()`.".format(type(self).__name__)
2021-07-29 02:26:34 +02:00
)
def _raise_if_errors(self, successes):
if all(successes):
return
num_errors = self.num_envs - sum(successes)
assert num_errors > 0
for _ in range(num_errors):
index, exctype, value = self.error_queue.get()
2021-07-29 15:39:42 -04:00
logger.error(
"Received the following error from Worker-{0}: "
"{1}: {2}".format(index, exctype.__name__, value)
)
2021-07-29 02:26:34 +02:00
logger.error("Shutting down Worker-{0}.".format(index))
self.parent_pipes[index].close()
self.parent_pipes[index] = None
2021-07-29 02:26:34 +02:00
logger.error("Raising the last exception back to the main process.")
raise exctype(value)
def _worker(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is None
env = env_fn()
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
2021-07-29 02:26:34 +02:00
if command == "reset":
observation = env.reset()
pipe.send((observation, True))
2021-07-29 02:26:34 +02:00
elif command == "step":
observation, reward, done, info = env.step(data)
if done:
observation = env.reset()
pipe.send(((observation, reward, done, info), True))
2021-07-29 02:26:34 +02:00
elif command == "seed":
env.seed(data)
pipe.send((None, True))
2021-07-29 02:26:34 +02:00
elif command == "close":
pipe.send((None, True))
break
2021-07-29 02:26:34 +02:00
elif command == "_check_observation_space":
pipe.send((data == env.observation_space, True))
else:
2021-07-29 02:26:34 +02:00
raise RuntimeError(
"Received unknown command `{0}`. Must "
"be one of {`reset`, `step`, `seed`, `close`, "
"`_check_observation_space`}.".format(command)
)
except (KeyboardInterrupt, Exception):
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send((None, False))
finally:
env.close()
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is not None
env = env_fn()
observation_space = env.observation_space
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
2021-07-29 02:26:34 +02:00
if command == "reset":
observation = env.reset()
2021-07-29 15:39:42 -04:00
write_to_shared_memory(
index, observation, shared_memory, observation_space
)
pipe.send((None, True))
2021-07-29 02:26:34 +02:00
elif command == "step":
observation, reward, done, info = env.step(data)
if done:
observation = env.reset()
2021-07-29 15:39:42 -04:00
write_to_shared_memory(
index, observation, shared_memory, observation_space
)
pipe.send(((None, reward, done, info), True))
2021-07-29 02:26:34 +02:00
elif command == "seed":
env.seed(data)
pipe.send((None, True))
2021-07-29 02:26:34 +02:00
elif command == "close":
pipe.send((None, True))
break
2021-07-29 02:26:34 +02:00
elif command == "_check_observation_space":
pipe.send((data == observation_space, True))
else:
2021-07-29 02:26:34 +02:00
raise RuntimeError(
"Received unknown command `{0}`. Must "
"be one of {`reset`, `step`, `seed`, `close`, "
"`_check_observation_space`}.".format(command)
)
except (KeyboardInterrupt, Exception):
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send((None, False))
finally:
env.close()