Files
Gymnasium/tests/test_core.py

111 lines
3.3 KiB
Python
Raw Normal View History

import pytest
import numpy as np
from gym import core, spaces
2021-07-29 02:26:34 +02:00
class ArgumentEnv(core.Env):
calls = 0
def __init__(self, arg):
self.calls += 1
self.arg = arg
2021-07-29 02:26:34 +02:00
class UnittestEnv(core.Env):
observation_space = spaces.Box(low=0, high=255, shape=(64, 64, 3), dtype=np.uint8)
action_space = spaces.Discrete(3)
def reset(self):
return self.observation_space.sample() # Dummy observation
def step(self, action):
observation = self.observation_space.sample() # Dummy observation
return (observation, 0.0, False, {})
class UnknownSpacesEnv(core.Env):
"""This environment defines its observation & action spaces only
after the first call to reset. Although this pattern is sometimes
necessary when implementing a new environment (e.g. if it depends
on external resources), it is not encouraged.
"""
def reset(self):
self.observation_space = spaces.Box(
low=0, high=255, shape=(64, 64, 3), dtype=np.uint8
)
self.action_space = spaces.Discrete(3)
return self.observation_space.sample() # Dummy observation
def step(self, action):
observation = self.observation_space.sample() # Dummy observation
return (observation, 0.0, False, {})
class NewPropertyWrapper(core.Wrapper):
def __init__(
self,
env,
observation_space=None,
action_space=None,
reward_range=None,
metadata=None,
):
super().__init__(env)
if observation_space is not None:
# Only set the observation space if not None to test property forwarding
self.observation_space = observation_space
if action_space is not None:
self.action_space = action_space
if reward_range is not None:
self.reward_range = reward_range
if metadata is not None:
self.metadata = metadata
def test_env_instantiation():
# This looks like a pretty trivial, but given our usage of
# __new__, it's worth having.
2021-07-29 02:26:34 +02:00
env = ArgumentEnv("arg")
assert env.arg == "arg"
assert env.calls == 1
properties = [
{
"observation_space": spaces.Box(
low=0.0, high=1.0, shape=(64, 64, 3), dtype=np.float32
)
},
{"action_space": spaces.Discrete(2)},
{"reward_range": (-1.0, 1.0)},
{"metadata": {"render.modes": ["human", "rgb_array"]}},
{
"observation_space": spaces.Box(
low=0.0, high=1.0, shape=(64, 64, 3), dtype=np.float32
),
"action_space": spaces.Discrete(2),
},
]
@pytest.mark.parametrize("class_", [UnittestEnv, UnknownSpacesEnv])
@pytest.mark.parametrize("props", properties)
def test_wrapper_property_forwarding(class_, props):
env = class_()
env = NewPropertyWrapper(env, **props)
# If UnknownSpacesEnv, then call reset to define the spaces
if isinstance(env.unwrapped, UnknownSpacesEnv):
_ = env.reset()
# Test the properties set by the wrapper
for key, value in props.items():
assert getattr(env, key) == value
# Otherwise, test if the properties are forwarded
all_properties = {"observation_space", "action_space", "reward_range", "metadata"}
for key in all_properties - props.keys():
assert getattr(env, key) == getattr(env.unwrapped, key)