Files
Gymnasium/tests/wrappers/test_autoreset.py

101 lines
2.8 KiB
Python
Raw Normal View History

import pytest
from typing import Optional
import numpy as np
import gym
from gym.wrappers import AutoResetWrapper
class DummyResetEnv(gym.Env):
"""
A dummy environment which returns ascending numbers starting
at 0 when self.step() is called. After the third call to self.step()
done is true. Info dicts are also returned containing the same number
returned as an observation, accessible via the key "count".
This environment is provided for the purpose of testing the
autoreset wrapper.
"""
metadata = {}
def __init__(self):
self.action_space = gym.spaces.Box(low=np.array([-1.0]), high=np.array([1.0]))
self.observation_space = gym.spaces.Box(
low=np.array([-1.0]), high=np.array([1.0])
)
self.count = 0
def step(self, action):
self.count += 1
return (
np.array([self.count]),
1 if self.count > 2 else 0,
self.count > 2,
{"count": self.count},
)
def reset(
self,
*,
seed: Optional[int] = None,
return_info: Optional[bool] = False,
options: Optional[dict] = None
):
self.count = 0
if not return_info:
return np.array([self.count])
else:
return np.array([self.count]), {"count": self.count}
def test_autoreset_reset_info():
env = gym.make("CartPole-v1")
env = AutoResetWrapper(env)
ob_space = env.observation_space
obs = env.reset()
assert ob_space.contains(obs)
obs = env.reset(return_info=False)
assert ob_space.contains(obs)
obs, info = env.reset(return_info=True)
assert ob_space.contains(obs)
assert isinstance(info, dict)
def test_autoreset_autoreset():
env = DummyResetEnv()
env = AutoResetWrapper(env)
obs, info = env.reset(return_info=True)
assert obs == np.array([0])
assert info == {"count": 0}
action = 1
obs, reward, done, info = env.step(action)
assert obs == np.array([1])
assert reward == 0
assert done == False
assert info == {"count": 1}
obs, reward, done, info = env.step(action)
assert obs == np.array([2])
assert done == False
assert reward == 0
assert info == {"count": 2}
obs, reward, done, info = env.step(action)
assert obs == np.array([0])
assert done == True
assert reward == 1
assert info == {
"count": 0,
"terminal_observation": np.array([3]),
"terminal_info": {"count": 3},
}
obs, reward, done, info = env.step(action)
assert obs == np.array([1])
assert reward == 0
assert done == False
assert info == {"count": 1}
obs, reward, done, info = env.step(action)
assert obs == np.array([2])
assert reward == 0
assert done == False
assert info == {"count": 2}