Files
Gymnasium/examples/utilities/live_plot.py

70 lines
2.1 KiB
Python
Raw Normal View History

2016-05-30 22:02:37 -07:00
import gym
import matplotlib
import matplotlib.pyplot as plt
class LivePlot(object):
def __init__(self, outdir, data_key='episode_rewards', line_color='blue'):
"""
Liveplot renders a graph of either episode_rewards or episode_lengths
Args:
outdir (outdir): Monitor output file location used to populate the graph
data_key (Optional[str]): The key in the json to graph (episode_rewards or episode_lengths).
line_color (Optional[dict]): Color of the plot.
"""
self.outdir = outdir
self._last_data = None
self.data_key = data_key
self.line_color = line_color
#styling options
matplotlib.rcParams['toolbar'] = 'None'
plt.style.use('ggplot')
plt.xlabel("")
plt.ylabel(data_key)
fig = plt.gcf().canvas.set_window_title('')
def plot(self):
results = gym.monitoring.monitor.load_results(self.outdir)
data = results[self.data_key]
#only update plot if data is different (plot calls are expensive)
2016-05-30 22:02:37 -07:00
if data != self._last_data:
self._last_data = data
plt.plot(data, color=self.line_color)
# pause so matplotlib will display
# may want to figure out matplotlib animation or use a different library in the future
2016-05-30 22:02:37 -07:00
plt.pause(0.000001)
if __name__ == '__main__':
env = gym.make('CartPole-v0')
outdir = '/tmp/random-agent-results'
env.seed(0)
env.monitor.start(outdir, force=True)
2016-05-30 22:02:37 -07:00
# You may optionally include a LivePlot so that you can see
# how your agent is performing. Use plotter.plot() to update
# the graph.
plotter = LivePlot(outdir)
episode_count = 100
max_steps = 200
reward = 0
done = False
for i in range(episode_count):
ob = env.reset()
for j in range(max_steps):
ob, reward, done, _ = env.step(env.action_space.sample())
if done:
break
plotter.plot()
env.render()
# Dump result info to disk
env.monitor.close()