Files
Gymnasium/gym/vector/sync_vector_env.py

113 lines
3.9 KiB
Python
Raw Normal View History

import numpy as np
from copy import deepcopy
from gym import logger
from gym.vector.vector_env import VectorEnv
from gym.vector.utils import concatenate, create_empty_array
2021-07-29 02:26:34 +02:00
__all__ = ["SyncVectorEnv"]
class SyncVectorEnv(VectorEnv):
"""Vectorized environment that serially runs multiple environments.
Parameters
----------
env_fns : iterable of callable
Functions that create the environments.
observation_space : `gym.spaces.Space` instance, optional
Observation space of a single environment. If `None`, then the
observation space of the first environment is taken.
action_space : `gym.spaces.Space` instance, optional
Action space of a single environment. If `None`, then the action space
of the first environment is taken.
copy : bool (default: `True`)
If `True`, then the `reset` and `step` methods return a copy of the
observations.
"""
2021-07-29 02:26:34 +02:00
def __init__(self, env_fns, observation_space=None, action_space=None, copy=True):
self.env_fns = env_fns
self.envs = [env_fn() for env_fn in env_fns]
self.copy = copy
2021-07-29 02:26:34 +02:00
if (observation_space is None) or (action_space is None):
observation_space = observation_space or self.envs[0].observation_space
action_space = action_space or self.envs[0].action_space
2021-07-29 02:26:34 +02:00
super(SyncVectorEnv, self).__init__(
num_envs=len(env_fns),
observation_space=observation_space,
action_space=action_space,
)
self._check_observation_spaces()
2021-07-29 15:39:42 -04:00
self.observations = create_empty_array(
self.single_observation_space, n=self.num_envs, fn=np.zeros
)
self._rewards = np.zeros((self.num_envs,), dtype=np.float64)
self._dones = np.zeros((self.num_envs,), dtype=np.bool_)
self._actions = None
def seed(self, seeds=None):
if seeds is None:
seeds = [None for _ in range(self.num_envs)]
if isinstance(seeds, int):
seeds = [seeds + i for i in range(self.num_envs)]
assert len(seeds) == self.num_envs
for env, seed in zip(self.envs, seeds):
env.seed(seed)
def reset_wait(self):
self._dones[:] = False
observations = []
for env in self.envs:
observation = env.reset()
observations.append(observation)
2021-07-29 15:39:42 -04:00
self.observations = concatenate(
observations, self.observations, self.single_observation_space
)
return deepcopy(self.observations) if self.copy else self.observations
def step_async(self, actions):
self._actions = actions
def step_wait(self):
observations, infos = [], []
for i, (env, action) in enumerate(zip(self.envs, self._actions)):
observation, self._rewards[i], self._dones[i], info = env.step(action)
if self._dones[i]:
observation = env.reset()
observations.append(observation)
infos.append(info)
2021-07-29 15:39:42 -04:00
self.observations = concatenate(
observations, self.observations, self.single_observation_space
)
2021-07-29 02:26:34 +02:00
return (
deepcopy(self.observations) if self.copy else self.observations,
np.copy(self._rewards),
np.copy(self._dones),
infos,
)
def close_extras(self, **kwargs):
[env.close() for env in self.envs]
def _check_observation_spaces(self):
for env in self.envs:
if not (env.observation_space == self.single_observation_space):
break
else:
return True
2021-07-29 02:26:34 +02:00
raise RuntimeError(
"Some environments have an observation space "
"different from `{0}`. In order to batch observations, the "
"observation spaces from all environments must be "
"equal.".format(self.single_observation_space)
)