Files
Gymnasium/gym/envs/mujoco/swimmer_v4.py

221 lines
11 KiB
Python
Raw Normal View History

2022-05-24 08:47:51 -04:00
__credits__ = ["Rushiv Arora"]
Render API (#2671) * add pygame GUI for frozen_lake.py env * add new line at EOF * pre-commit reformat * improve graphics * new images and dynamic window size * darker tile borders and fix ICC profile * pre-commit hook * adjust elf and stool size * Update frozen_lake.py * reformat * fix #2600 * #2600 * add rgb_array support * reformat * test render api change on FrozenLake * add render support for reset on frozenlake * add clock on pygame render * new render api for blackjack * new render api for cliffwalking * new render api for Env class * update reset method, lunar and Env * fix wrapper * fix reset lunar * new render api for box2d envs * new render api for mujoco envs * fix bug * new render api for classic control envs * fix tests * add render_mode None for CartPole * new render api for test fake envs * pre-commit hook * fix FrozenLake * fix FrozenLake * more render_mode to super - frozenlake * remove kwargs from frozen_lake new * pre-commit hook * add deprecated render method * add backwards compatibility * fix test * add _render * move pygame.init() (avoid pygame dependency on init) * fix pygame dependencies * remove collect_render() maintain multi-behaviours .render() * add type hints * fix renderer * don't call .render() with None * improve docstring * add single_rgb_array to all envs * remove None from metadata["render_modes"] * add type hints to test_env_checkers * fix lint * add comments to renderer * add comments to single_depth_array and single_state_pixels * reformat * add deprecation warnings and env.render_mode declaration * fix lint * reformat * fix tests * add docs * fix car racing determinism * remove warning test envs, customizable modes on renderer * remove commments and add todo for env_checker * fix car racing * replace render mode check with assert * update new mujoco * reformat * reformat * change metaclass definition * fix tests * implement mark suggestions (test, docs, sets) * check_render Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-08 00:20:56 +02:00
from typing import Optional
2022-05-24 08:47:51 -04:00
import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
DEFAULT_CAMERA_CONFIG = {}
class SwimmerEnv(mujoco_env.MujocoEnv, utils.EzPickle):
"""
### Description
This environment corresponds to the Swimmer environment described in Rémi Coulom's PhD thesis
["Reinforcement Learning Using Neural Networks, with Applications to Motor Control"](https://tel.archives-ouvertes.fr/tel-00003985/document).
The environment aims to increase the number of independent state and control
variables as compared to the classic control environments. The swimmers
consist of three or more segments ('***links***') and one less articulation
joints ('***rotors***') - one rotor joint connecting exactly two links to
form a linear chain. The swimmer is suspended in a two dimensional pool and
always starts in the same position (subject to some deviation drawn from an
uniform distribution), and the goal is to move as fast as possible towards
the right by applying torque on the rotors and using the fluids friction.
### Notes
The problem parameters are:
Problem parameters:
* *n*: number of body parts
* *m<sub>i</sub>*: mass of part *i* (*i* {1...n})
* *l<sub>i</sub>*: length of part *i* (*i* {1...n})
* *k*: viscous-friction coefficient
While the default environment has *n* = 3, *l<sub>i</sub>* = 0.1,
and *k* = 0.1. It is possible to tweak the MuJoCo XML files to increase the
number of links, or to tweak any of the parameters.
### Action Space
The agent take a 2-element vector for actions.
The action space is a continuous `(action, action)` in `[-1, 1]`, where
`action` represents the numerical torques applied between *links*
| Num | Action | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit |
|-----|------------------------------------|-------------|-------------|----------------------------------|-------|--------------|
| 0 | Torque applied on the first rotor | -1 | 1 | rot2 | hinge | torque (N m) |
| 1 | Torque applied on the second rotor | -1 | 1 | rot3 | hinge | torque (N m) |
### Observation Space
The state space consists of:
* A<sub>0</sub>: position of first point
* θ<sub>i</sub>: angle of part *i* with respect to the *x* axis
* A<sub>0</sub>, θ<sub>i</sub>: their derivatives with respect to time (velocity and angular velocity)
The observation is a `ndarray` with shape `(8,)` where the elements correspond to the following:
| Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit |
|-----|--------------------------------------|------|-----|----------------------------------|-------|--------------------------|
| 0 | x-coordinate of the front tip | -Inf | Inf | slider1 | slide | position (m) |
| 1 | y-coordinate of the front tip | -Inf | Inf | slider2 | slide | position (m) |
| 2 | angle of the front tip | -Inf | Inf | rot | hinge | angle (rad) |
| 3 | angle of the second rotor | -Inf | Inf | rot2 | hinge | angle (rad) |
| 4 | angle of the second rotor | -Inf | Inf | rot3 | hinge | angle (rad) |
| 5 | velocity of the tip along the x-axis | -Inf | Inf | slider1 | slide | velocity (m/s) |
| 6 | velocity of the tip along the y-axis | -Inf | Inf | slider2 | slide | velocity (m/s) |
| 7 | angular velocity of front tip | -Inf | Inf | rot | hinge | angular velocity (rad/s) |
| 8 | angular velocity of second rotor | -Inf | Inf | rot2 | hinge | angular velocity (rad/s) |
| 9 | angular velocity of third rotor | -Inf | Inf | rot3 | hinge | angular velocity (rad/s) |
2022-05-24 08:47:51 -04:00
**Note:**
In practice (and Gym implementation), the first two positional elements are
omitted from the state space since the reward function is calculated based
on those values. Therefore, observation space has shape `(8,)` and looks like:
| Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit |
|-----|--------------------------------------|------|-----|----------------------------------|-------|--------------------------|
| 0 | angle of the front tip | -Inf | Inf | rot | hinge | angle (rad) |
| 1 | angle of the second rotor | -Inf | Inf | rot2 | hinge | angle (rad) |
| 2 | angle of the second rotor | -Inf | Inf | rot3 | hinge | angle (rad) |
| 3 | velocity of the tip along the x-axis | -Inf | Inf | slider1 | slide | velocity (m/s) |
| 4 | velocity of the tip along the y-axis | -Inf | Inf | slider2 | slide | velocity (m/s) |
| 5 | angular velocity of front tip | -Inf | Inf | rot | hinge | angular velocity (rad/s) |
| 6 | angular velocity of second rotor | -Inf | Inf | rot2 | hinge | angular velocity (rad/s) |
| 7 | angular velocity of third rotor | -Inf | Inf | rot3 | hinge | angular velocity (rad/s) |
2022-05-24 08:47:51 -04:00
### Rewards
The reward consists of two parts:
- *reward_front*: A reward of moving forward which is measured
as *(x-coordinate before action - x-coordinate after action)/dt*. *dt* is
the time between actions and is dependent on the frame_skip parameter
2022-05-24 08:47:51 -04:00
(default is 4), where the *dt* for one frame is 0.01 - making the
default *dt = 4 * 0.01 = 0.04*. This reward would be positive if the swimmer
swims right as desired.
- *reward_control*: A negative reward for penalising the swimmer if it takes
actions that are too large. It is measured as *-coefficient x
sum(action<sup>2</sup>)* where *coefficient* is a parameter set for the
control and has a default value of 0.0001
The total reward returned is ***reward*** *=* *reward_front + reward_control*
### Starting State
All observations start in state (0,0,0,0,0,0,0,0) with a Uniform noise in the range of [-0.1, 0.1] is added to the initial state for stochasticity.
### Episode Termination
The episode terminates when the episode length is greater than 1000.
### Arguments
No additional arguments are currently supported (in v2 and lower), but
modifications can be made to the XML file in the assets folder
(or by changing the path to a modified XML file in another folder).
```
gym.make('Swimmer-v2')
```
v3 and v4 take gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc.
2022-05-24 08:47:51 -04:00
```
env = gym.make('Swimmer-v4', ctrl_cost_weight=0.1, ....)
2022-05-24 08:47:51 -04:00
```
### Version History
* v4: all mujoco environments now use the mujoco bindings in mujoco>=2.1.3
2022-05-24 08:47:51 -04:00
* v3: support for gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
* v2: All continuous control environments now use mujoco_py >= 1.50
* v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments.
* v0: Initial versions release (1.0.0)
"""
def __init__(
self,
Render API (#2671) * add pygame GUI for frozen_lake.py env * add new line at EOF * pre-commit reformat * improve graphics * new images and dynamic window size * darker tile borders and fix ICC profile * pre-commit hook * adjust elf and stool size * Update frozen_lake.py * reformat * fix #2600 * #2600 * add rgb_array support * reformat * test render api change on FrozenLake * add render support for reset on frozenlake * add clock on pygame render * new render api for blackjack * new render api for cliffwalking * new render api for Env class * update reset method, lunar and Env * fix wrapper * fix reset lunar * new render api for box2d envs * new render api for mujoco envs * fix bug * new render api for classic control envs * fix tests * add render_mode None for CartPole * new render api for test fake envs * pre-commit hook * fix FrozenLake * fix FrozenLake * more render_mode to super - frozenlake * remove kwargs from frozen_lake new * pre-commit hook * add deprecated render method * add backwards compatibility * fix test * add _render * move pygame.init() (avoid pygame dependency on init) * fix pygame dependencies * remove collect_render() maintain multi-behaviours .render() * add type hints * fix renderer * don't call .render() with None * improve docstring * add single_rgb_array to all envs * remove None from metadata["render_modes"] * add type hints to test_env_checkers * fix lint * add comments to renderer * add comments to single_depth_array and single_state_pixels * reformat * add deprecation warnings and env.render_mode declaration * fix lint * reformat * fix tests * add docs * fix car racing determinism * remove warning test envs, customizable modes on renderer * remove commments and add todo for env_checker * fix car racing * replace render mode check with assert * update new mujoco * reformat * reformat * change metaclass definition * fix tests * implement mark suggestions (test, docs, sets) * check_render Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-08 00:20:56 +02:00
render_mode: Optional[str] = None,
2022-05-24 08:47:51 -04:00
forward_reward_weight=1.0,
ctrl_cost_weight=1e-4,
reset_noise_scale=0.1,
exclude_current_positions_from_observation=True,
):
utils.EzPickle.__init__(**locals())
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation
)
mujoco_env.MujocoEnv.__init__(self, "swimmer.xml", 4, render_mode=render_mode)
2022-05-24 08:47:51 -04:00
def control_cost(self, action):
control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
return control_cost
def step(self, action):
xy_position_before = self.data.qpos[0:2].copy()
self.do_simulation(action, self.frame_skip)
xy_position_after = self.data.qpos[0:2].copy()
xy_velocity = (xy_position_after - xy_position_before) / self.dt
x_velocity, y_velocity = xy_velocity
forward_reward = self._forward_reward_weight * x_velocity
ctrl_cost = self.control_cost(action)
observation = self._get_obs()
reward = forward_reward - ctrl_cost
done = False
info = {
"reward_fwd": forward_reward,
"reward_ctrl": -ctrl_cost,
"x_position": xy_position_after[0],
"y_position": xy_position_after[1],
"distance_from_origin": np.linalg.norm(xy_position_after, ord=2),
"x_velocity": x_velocity,
"y_velocity": y_velocity,
"forward_reward": forward_reward,
}
Render API (#2671) * add pygame GUI for frozen_lake.py env * add new line at EOF * pre-commit reformat * improve graphics * new images and dynamic window size * darker tile borders and fix ICC profile * pre-commit hook * adjust elf and stool size * Update frozen_lake.py * reformat * fix #2600 * #2600 * add rgb_array support * reformat * test render api change on FrozenLake * add render support for reset on frozenlake * add clock on pygame render * new render api for blackjack * new render api for cliffwalking * new render api for Env class * update reset method, lunar and Env * fix wrapper * fix reset lunar * new render api for box2d envs * new render api for mujoco envs * fix bug * new render api for classic control envs * fix tests * add render_mode None for CartPole * new render api for test fake envs * pre-commit hook * fix FrozenLake * fix FrozenLake * more render_mode to super - frozenlake * remove kwargs from frozen_lake new * pre-commit hook * add deprecated render method * add backwards compatibility * fix test * add _render * move pygame.init() (avoid pygame dependency on init) * fix pygame dependencies * remove collect_render() maintain multi-behaviours .render() * add type hints * fix renderer * don't call .render() with None * improve docstring * add single_rgb_array to all envs * remove None from metadata["render_modes"] * add type hints to test_env_checkers * fix lint * add comments to renderer * add comments to single_depth_array and single_state_pixels * reformat * add deprecation warnings and env.render_mode declaration * fix lint * reformat * fix tests * add docs * fix car racing determinism * remove warning test envs, customizable modes on renderer * remove commments and add todo for env_checker * fix car racing * replace render mode check with assert * update new mujoco * reformat * reformat * change metaclass definition * fix tests * implement mark suggestions (test, docs, sets) * check_render Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-08 00:20:56 +02:00
self.renderer.render_step()
2022-05-24 08:47:51 -04:00
return observation, reward, done, info
def _get_obs(self):
position = self.data.qpos.flat.copy()
velocity = self.data.qvel.flat.copy()
if self._exclude_current_positions_from_observation:
position = position[2:]
observation = np.concatenate([position, velocity]).ravel()
return observation
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nq
)
qvel = self.init_qvel + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nv
)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
def viewer_setup(self):
for key, value in DEFAULT_CAMERA_CONFIG.items():
if isinstance(value, np.ndarray):
getattr(self.viewer.cam, key)[:] = value
else:
setattr(self.viewer.cam, key, value)