Files
Gymnasium/gym/envs/mujoco/inverted_pendulum_v4.py

134 lines
5.6 KiB
Python
Raw Normal View History

2022-05-24 08:47:51 -04:00
import numpy as np
from gym import utils
2022-07-06 11:18:03 -04:00
from gym.envs.mujoco import MujocoEnv
from gym.spaces import Box
2022-05-24 08:47:51 -04:00
2022-07-06 11:18:03 -04:00
class InvertedPendulumEnv(MujocoEnv, utils.EzPickle):
2022-05-24 08:47:51 -04:00
"""
### Description
This environment is the cartpole environment based on the work done by
Barto, Sutton, and Anderson in ["Neuronlike adaptive elements that can
solve difficult learning control problems"](https://ieeexplore.ieee.org/document/6313077),
just like in the classic environments but now powered by the Mujoco physics simulator -
allowing for more complex experiments (such as varying the effects of gravity).
This environment involves a cart that can moved linearly, with a pole fixed on it
at one end and having another end free. The cart can be pushed left or right, and the
goal is to balance the pole on the top of the cart by applying forces on the cart.
### Action Space
The agent take a 1-element vector for actions.
The action space is a continuous `(action)` in `[-3, 3]`, where `action` represents
the numerical force applied to the cart (with magnitude representing the amount of
force and sign representing the direction)
| Num | Action | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit |
|-----|---------------------------|-------------|-------------|----------------------------------|-------|-----------|
| 0 | Force applied on the cart | -3 | 3 | slider | slide | Force (N) |
### Observation Space
The state space consists of positional values of different body parts of
the pendulum system, followed by the velocities of those individual parts (their derivatives)
with all the positions ordered before all the velocities.
The observation is a `ndarray` with shape `(4,)` where the elements correspond to the following:
2022-06-21 15:57:21 +02:00
| Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit |
| --- | --------------------------------------------- | ---- | --- | -------------------------------- | ----- | ------------------------- |
| 0 | position of the cart along the linear surface | -Inf | Inf | slider | slide | position (m) |
| 1 | vertical angle of the pole on the cart | -Inf | Inf | hinge | hinge | angle (rad) |
| 2 | linear velocity of the cart | -Inf | Inf | slider | slide | velocity (m/s) |
| 3 | angular velocity of the pole on the cart | -Inf | Inf | hinge | hinge | anglular velocity (rad/s) |
2022-05-24 08:47:51 -04:00
### Rewards
The goal is to make the inverted pendulum stand upright (within a certain angle limit)
as long as possible - as such a reward of +1 is awarded for each timestep that
the pole is upright.
### Starting State
All observations start in state
(0.0, 0.0, 0.0, 0.0) with a uniform noise in the range
of [-0.01, 0.01] added to the values for stochasticity.
### Episode End
The episode ends when any of the following happens:
2022-05-24 08:47:51 -04:00
1. Truncation: The episode duration reaches 1000 timesteps.
2. Termination: Any of the state space values is no longer finite.
3. Termination: The absolutely value of the vertical angle between the pole and the cart is greater than 0.2 radian.
2022-05-24 08:47:51 -04:00
### Arguments
2022-06-21 15:57:21 +02:00
No additional arguments are currently supported.
2022-05-24 08:47:51 -04:00
```
2022-06-21 15:57:21 +02:00
env = gym.make('InvertedPendulum-v4')
2022-05-24 08:47:51 -04:00
```
There is no v3 for InvertedPendulum, unlike the robot environments where a
v3 and beyond take gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc.
### Version History
* v4: all mujoco environments now use the mujoco bindings in mujoco>=2.1.3
2022-05-24 08:47:51 -04:00
* v3: support for gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
* v2: All continuous control environments now use mujoco_py >= 1.50
* v1: max_time_steps raised to 1000 for robot based tasks (including inverted pendulum)
* v0: Initial versions release (1.0.0)
"""
2022-06-19 21:50:31 +01:00
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
"single_rgb_array",
"single_depth_array",
],
"render_fps": 25,
}
def __init__(self, **kwargs):
2022-05-24 08:47:51 -04:00
utils.EzPickle.__init__(self)
observation_space = Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float64)
2022-07-06 11:18:03 -04:00
MujocoEnv.__init__(
self,
"inverted_pendulum.xml",
2,
observation_space=observation_space,
**kwargs
)
2022-05-24 08:47:51 -04:00
def step(self, a):
reward = 1.0
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
terminated = bool(not np.isfinite(ob).all() or (np.abs(ob[1]) > 0.2))
Render API (#2671) * add pygame GUI for frozen_lake.py env * add new line at EOF * pre-commit reformat * improve graphics * new images and dynamic window size * darker tile borders and fix ICC profile * pre-commit hook * adjust elf and stool size * Update frozen_lake.py * reformat * fix #2600 * #2600 * add rgb_array support * reformat * test render api change on FrozenLake * add render support for reset on frozenlake * add clock on pygame render * new render api for blackjack * new render api for cliffwalking * new render api for Env class * update reset method, lunar and Env * fix wrapper * fix reset lunar * new render api for box2d envs * new render api for mujoco envs * fix bug * new render api for classic control envs * fix tests * add render_mode None for CartPole * new render api for test fake envs * pre-commit hook * fix FrozenLake * fix FrozenLake * more render_mode to super - frozenlake * remove kwargs from frozen_lake new * pre-commit hook * add deprecated render method * add backwards compatibility * fix test * add _render * move pygame.init() (avoid pygame dependency on init) * fix pygame dependencies * remove collect_render() maintain multi-behaviours .render() * add type hints * fix renderer * don't call .render() with None * improve docstring * add single_rgb_array to all envs * remove None from metadata["render_modes"] * add type hints to test_env_checkers * fix lint * add comments to renderer * add comments to single_depth_array and single_state_pixels * reformat * add deprecation warnings and env.render_mode declaration * fix lint * reformat * fix tests * add docs * fix car racing determinism * remove warning test envs, customizable modes on renderer * remove commments and add todo for env_checker * fix car racing * replace render mode check with assert * update new mujoco * reformat * reformat * change metaclass definition * fix tests * implement mark suggestions (test, docs, sets) * check_render Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-08 00:20:56 +02:00
self.renderer.render_step()
return ob, reward, terminated, False, {}
2022-05-24 08:47:51 -04:00
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.model.nq, low=-0.01, high=0.01
)
qvel = self.init_qvel + self.np_random.uniform(
size=self.model.nv, low=-0.01, high=0.01
)
self.set_state(qpos, qvel)
return self._get_obs()
def _get_obs(self):
return np.concatenate([self.data.qpos, self.data.qvel]).ravel()
def viewer_setup(self):
assert self.viewer is not None
2022-05-24 08:47:51 -04:00
v = self.viewer
v.cam.trackbodyid = 0
v.cam.distance = self.model.stat.extent