Files
Gymnasium/gym/envs/mujoco/ant.py

53 lines
1.8 KiB
Python
Raw Normal View History

2016-04-27 08:00:58 -07:00
import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
2021-07-29 02:26:34 +02:00
2016-04-27 08:00:58 -07:00
class AntEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self):
2021-07-29 02:26:34 +02:00
mujoco_env.MujocoEnv.__init__(self, "ant.xml", 5)
2016-04-27 08:00:58 -07:00
utils.EzPickle.__init__(self)
def step(self, a):
2016-04-27 08:00:58 -07:00
xposbefore = self.get_body_com("torso")[0]
self.do_simulation(a, self.frame_skip)
xposafter = self.get_body_com("torso")[0]
2021-07-29 02:26:34 +02:00
forward_reward = (xposafter - xposbefore) / self.dt
ctrl_cost = 0.5 * np.square(a).sum()
2021-07-29 12:42:48 -04:00
contact_cost = 0.5 * 1e-3 * np.sum(np.square(np.clip(self.sim.data.cfrc_ext, -1, 1)))
2016-04-27 08:00:58 -07:00
survive_reward = 1.0
reward = forward_reward - ctrl_cost - contact_cost + survive_reward
2016-04-30 22:47:51 -07:00
state = self.state_vector()
2021-07-29 02:26:34 +02:00
notdone = np.isfinite(state).all() and state[2] >= 0.2 and state[2] <= 1.0
2016-04-27 08:00:58 -07:00
done = not notdone
ob = self._get_obs()
2021-07-29 02:26:34 +02:00
return (
ob,
reward,
done,
dict(
reward_forward=forward_reward,
reward_ctrl=-ctrl_cost,
reward_contact=-contact_cost,
reward_survive=survive_reward,
),
)
2016-04-27 08:00:58 -07:00
def _get_obs(self):
2021-07-29 02:26:34 +02:00
return np.concatenate(
[
self.sim.data.qpos.flat[2:],
self.sim.data.qvel.flat,
np.clip(self.sim.data.cfrc_ext, -1, 1).flat,
]
)
2016-04-27 08:00:58 -07:00
2016-04-30 22:47:51 -07:00
def reset_model(self):
2021-07-29 12:42:48 -04:00
qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-0.1, high=0.1)
2021-07-29 02:26:34 +02:00
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * 0.1
2016-04-30 22:47:51 -07:00
self.set_state(qpos, qvel)
2016-04-27 08:00:58 -07:00
return self._get_obs()
def viewer_setup(self):
self.viewer.cam.distance = self.model.stat.extent * 0.5