Files
Gymnasium/gym/vector/utils/shared_memory.py

178 lines
6.4 KiB
Python
Raw Normal View History

import numpy as np
import multiprocessing as mp
from ctypes import c_bool
from collections import OrderedDict
from gym import logger
from gym.spaces import Tuple, Dict
from gym.error import CustomSpaceError
from gym.vector.utils.spaces import _BaseGymSpaces
2021-07-29 02:26:34 +02:00
__all__ = ["create_shared_memory", "read_from_shared_memory", "write_to_shared_memory"]
def create_shared_memory(space, n=1, ctx=mp):
"""Create a shared memory object, to be shared across processes. This
eventually contains the observations from the vectorized environment.
Parameters
----------
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
n : int
Number of environments in the vectorized environment (i.e. the number
of processes).
ctx : `multiprocessing` context
Context for multiprocessing.
Returns
-------
shared_memory : dict, tuple, or `multiprocessing.Array` instance
Shared object across processes.
"""
if isinstance(space, _BaseGymSpaces):
return create_base_shared_memory(space, n=n, ctx=ctx)
elif isinstance(space, Tuple):
return create_tuple_shared_memory(space, n=n, ctx=ctx)
elif isinstance(space, Dict):
return create_dict_shared_memory(space, n=n, ctx=ctx)
else:
2021-07-29 02:26:34 +02:00
raise CustomSpaceError(
"Cannot create a shared memory for space with "
"type `{0}`. Shared memory only supports "
"default Gym spaces (e.g. `Box`, `Tuple`, "
"`Dict`, etc...), and does not support custom "
"Gym spaces.".format(type(space))
)
def create_base_shared_memory(space, n=1, ctx=mp):
dtype = space.dtype.char
2021-07-29 02:26:34 +02:00
if dtype in "?":
dtype = c_bool
return ctx.Array(dtype, n * int(np.prod(space.shape)))
2021-07-29 02:26:34 +02:00
def create_tuple_shared_memory(space, n=1, ctx=mp):
2021-07-29 12:42:48 -04:00
return tuple(create_shared_memory(subspace, n=n, ctx=ctx) for subspace in space.spaces)
2021-07-29 02:26:34 +02:00
def create_dict_shared_memory(space, n=1, ctx=mp):
2021-07-29 12:42:48 -04:00
return OrderedDict([(key, create_shared_memory(subspace, n=n, ctx=ctx)) for (key, subspace) in space.spaces.items()])
def read_from_shared_memory(shared_memory, space, n=1):
"""Read the batch of observations from shared memory as a numpy array.
Parameters
----------
shared_memory : dict, tuple, or `multiprocessing.Array` instance
Shared object across processes. This contains the observations from the
vectorized environment. This object is created with `create_shared_memory`.
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
n : int
Number of environments in the vectorized environment (i.e. the number
of processes).
Returns
-------
observations : dict, tuple or `np.ndarray` instance
Batch of observations as a (possibly nested) numpy array.
Notes
-----
The numpy array objects returned by `read_from_shared_memory` shares the
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
"""
if isinstance(space, _BaseGymSpaces):
return read_base_from_shared_memory(shared_memory, space, n=n)
elif isinstance(space, Tuple):
return read_tuple_from_shared_memory(shared_memory, space, n=n)
elif isinstance(space, Dict):
return read_dict_from_shared_memory(shared_memory, space, n=n)
else:
2021-07-29 02:26:34 +02:00
raise CustomSpaceError(
"Cannot read from a shared memory for space with "
"type `{0}`. Shared memory only supports "
"default Gym spaces (e.g. `Box`, `Tuple`, "
"`Dict`, etc...), and does not support custom "
"Gym spaces.".format(type(space))
)
def read_base_from_shared_memory(shared_memory, space, n=1):
2021-07-29 12:42:48 -04:00
return np.frombuffer(shared_memory.get_obj(), dtype=space.dtype).reshape((n,) + space.shape)
2021-07-29 02:26:34 +02:00
def read_tuple_from_shared_memory(shared_memory, space, n=1):
2021-07-29 12:42:48 -04:00
return tuple(read_from_shared_memory(memory, subspace, n=n) for (memory, subspace) in zip(shared_memory, space.spaces))
2021-07-29 02:26:34 +02:00
def read_dict_from_shared_memory(shared_memory, space, n=1):
2021-07-29 02:26:34 +02:00
return OrderedDict(
2021-07-29 12:42:48 -04:00
[(key, read_from_shared_memory(shared_memory[key], subspace, n=n)) for (key, subspace) in space.spaces.items()]
2021-07-29 02:26:34 +02:00
)
def write_to_shared_memory(index, value, shared_memory, space):
"""Write the observation of a single environment into shared memory.
Parameters
----------
index : int
Index of the environment (must be in `[0, num_envs)`).
value : sample from `space`
Observation of the single environment to write to shared memory.
shared_memory : dict, tuple, or `multiprocessing.Array` instance
Shared object across processes. This contains the observations from the
vectorized environment. This object is created with `create_shared_memory`.
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
Returns
-------
`None`
"""
if isinstance(space, _BaseGymSpaces):
write_base_to_shared_memory(index, value, shared_memory, space)
elif isinstance(space, Tuple):
write_tuple_to_shared_memory(index, value, shared_memory, space)
elif isinstance(space, Dict):
write_dict_to_shared_memory(index, value, shared_memory, space)
else:
2021-07-29 02:26:34 +02:00
raise CustomSpaceError(
"Cannot write to a shared memory for space with "
"type `{0}`. Shared memory only supports "
"default Gym spaces (e.g. `Box`, `Tuple`, "
"`Dict`, etc...), and does not support custom "
"Gym spaces.".format(type(space))
)
def write_base_to_shared_memory(index, value, shared_memory, space):
size = int(np.prod(space.shape))
destination = np.frombuffer(shared_memory.get_obj(), dtype=space.dtype)
2021-07-29 02:26:34 +02:00
np.copyto(
destination[index * size : (index + 1) * size],
np.asarray(value, dtype=space.dtype).flatten(),
)
def write_tuple_to_shared_memory(index, values, shared_memory, space):
for value, memory, subspace in zip(values, shared_memory, space.spaces):
write_to_shared_memory(index, value, memory, subspace)
2021-07-29 02:26:34 +02:00
def write_dict_to_shared_memory(index, values, shared_memory, space):
for key, subspace in space.spaces.items():
write_to_shared_memory(index, values[key], shared_memory[key], subspace)