2019-10-11 23:58:04 +02:00
|
|
|
import numpy as np
|
2022-03-31 12:50:38 -07:00
|
|
|
import pytest
|
2019-10-11 23:58:04 +02:00
|
|
|
|
|
|
|
import gym
|
|
|
|
from gym.wrappers import TransformObservation
|
|
|
|
|
|
|
|
|
2021-09-25 20:00:28 +02:00
|
|
|
@pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"])
|
2019-10-11 23:58:04 +02:00
|
|
|
def test_transform_observation(env_id):
|
Update the flake8 pre-commit ignores (#2778)
* Remove additional ignores from flake8
* Remove all unused imports
* Remove all unused imports
* Update flake8 and pyupgrade
* F841, removed unused variables
* E731, removed lambda assignment to variables
* Remove E731, F403, F405, F524
* Remove E722, bare exceptions
* Remove E712, compare variable == True or == False to is True or is False
* Remove E402, module level import not at top of file
* Added --pre-file-ignores
* Add --per-file-ignores removing E741, E302 and E704
* Add E741, do not use variables named ‘l’, ‘O’, or ‘I’ to ignore issues in classic control
* Fixed issues for pytest==6.2
* Remove unnecessary # noqa
* Edit comment with the removal of E302
* Added warnings and declared module, attr for pyright type hinting
* Remove unused import
* Removed flake8 E302
* Updated flake8 from 3.9.2 to 4.0.1
* Remove unused variable
2022-04-26 16:18:37 +01:00
|
|
|
def affine_transform(x):
|
|
|
|
return 3 * x + 2
|
|
|
|
|
2022-06-16 14:29:13 +01:00
|
|
|
env = gym.make(env_id, disable_env_checker=True)
|
2021-07-29 15:39:42 -04:00
|
|
|
wrapped_env = TransformObservation(
|
2022-06-16 14:29:13 +01:00
|
|
|
gym.make(env_id, disable_env_checker=True), lambda obs: affine_transform(obs)
|
2021-07-29 15:39:42 -04:00
|
|
|
)
|
2019-10-11 23:58:04 +02:00
|
|
|
|
2021-12-08 22:14:15 +01:00
|
|
|
obs = env.reset(seed=0)
|
|
|
|
wrapped_obs = wrapped_env.reset(seed=0)
|
2019-10-11 23:58:04 +02:00
|
|
|
assert np.allclose(wrapped_obs, affine_transform(obs))
|
|
|
|
|
|
|
|
action = env.action_space.sample()
|
|
|
|
obs, reward, done, _ = env.step(action)
|
|
|
|
wrapped_obs, wrapped_reward, wrapped_done, _ = wrapped_env.step(action)
|
|
|
|
assert np.allclose(wrapped_obs, affine_transform(obs))
|
|
|
|
assert np.allclose(wrapped_reward, reward)
|
|
|
|
assert wrapped_done == done
|