Type cast in spaces families (#2491)

* Type cast for `spaces.Dict`

* Type cast for `spaces.Tuple`

* Type cast for `spaces.Discrete`

* Type cast for `spaces.MultiDiscrete`

* Type cast for `spaces.MultiBinary`
This commit is contained in:
Xuehai Pan
2021-12-16 13:45:37 +08:00
committed by GitHub
parent 180d8ddd5c
commit 18c8b988d4
5 changed files with 29 additions and 16 deletions

View File

@@ -1,5 +1,5 @@
from collections import OrderedDict
from collections.abc import Mapping
from collections.abc import Mapping, Sequence
import numpy as np
from .space import Space
@@ -42,9 +42,15 @@ class Dict(Space, Mapping):
if spaces is None:
spaces = spaces_kwargs
if isinstance(spaces, dict) and not isinstance(spaces, OrderedDict):
spaces = OrderedDict(sorted(list(spaces.items())))
if isinstance(spaces, list):
try:
spaces = OrderedDict(sorted(spaces.items()))
except TypeError: # raise when sort by different types of keys
spaces = OrderedDict(spaces.items())
if isinstance(spaces, Sequence):
spaces = OrderedDict(spaces)
assert isinstance(spaces, OrderedDict), "spaces must be a dictionary"
self.spaces = spaces
for space in spaces.values():
assert isinstance(

View File

@@ -16,8 +16,9 @@ class Discrete(Space):
"""
def __init__(self, n, seed=None, start=0):
assert n >= 0 and isinstance(start, (int, np.integer))
self.n = n
assert n > 0, "n (counts) have to be positive"
assert isinstance(start, (int, np.integer))
self.n = int(n)
self.start = int(start)
super().__init__((), np.int64, seed)

View File

@@ -1,3 +1,4 @@
from collections.abc import Sequence
import numpy as np
from .space import Space
@@ -27,18 +28,21 @@ class MultiBinary(Space):
"""
def __init__(self, n, seed=None):
self.n = n
if type(n) in [tuple, list, np.ndarray]:
input_n = n
if isinstance(n, (Sequence, np.ndarray)):
self.n = input_n = tuple(int(i) for i in n)
else:
self.n = n = int(n)
input_n = (n,)
assert (np.asarray(input_n) > 0).all(), "n (counts) have to be positive"
super().__init__(input_n, np.int8, seed)
def sample(self):
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype)
def contains(self, x):
if isinstance(x, list) or isinstance(x, tuple):
if isinstance(x, Sequence):
x = np.array(x) # Promote list to array for contains check
if self.shape != x.shape:
return False

View File

@@ -1,3 +1,4 @@
from collections.abc import Sequence
import numpy as np
from gym import logger
from .space import Space
@@ -29,8 +30,8 @@ class MultiDiscrete(Space):
"""
nvec: vector of counts of each categorical variable
"""
assert (np.array(nvec) > 0).all(), "nvec (counts) have to be positive"
self.nvec = np.asarray(nvec, dtype=dtype)
self.nvec = np.array(nvec, dtype=dtype, copy=True)
assert (self.nvec > 0).all(), "nvec (counts) have to be positive"
super().__init__(self.nvec.shape, dtype, seed)
@@ -38,7 +39,7 @@ class MultiDiscrete(Space):
return (self.np_random.random(self.nvec.shape) * self.nvec).astype(self.dtype)
def contains(self, x):
if isinstance(x, list):
if isinstance(x, Sequence):
x = np.array(x) # Promote list to array for contains check
# if nvec is uint32 and space dtype is uint32, then 0 <= x < self.nvec guarantees that x
# is within correct bounds for space dtype (even though x does not have to be unsigned)

View File

@@ -11,6 +11,7 @@ class Tuple(Space):
"""
def __init__(self, spaces, seed=None):
spaces = tuple(spaces)
self.spaces = spaces
for space in spaces:
assert isinstance(
@@ -53,8 +54,8 @@ class Tuple(Space):
return tuple(space.sample() for space in self.spaces)
def contains(self, x):
if isinstance(x, list):
x = tuple(x) # Promote list to tuple for contains check
if isinstance(x, (list, np.ndarray)):
x = tuple(x) # Promote list and ndarray to tuple for contains check
return (
isinstance(x, tuple)
and len(x) == len(self.spaces)