mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-20 22:12:03 +00:00
Merge v1.0.0 (#682)
Co-authored-by: Kallinteris Andreas <30759571+Kallinteris-Andreas@users.noreply.github.com> Co-authored-by: Jet <38184875+jjshoots@users.noreply.github.com> Co-authored-by: Omar Younis <42100908+younik@users.noreply.github.com>
This commit is contained in:
172
gymnasium/wrappers/numpy_to_torch.py
Normal file
172
gymnasium/wrappers/numpy_to_torch.py
Normal file
@@ -0,0 +1,172 @@
|
||||
"""Helper functions and wrapper class for converting between PyTorch and NumPy."""
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
import numbers
|
||||
from collections import abc
|
||||
from typing import Any, Iterable, Mapping, SupportsFloat, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gymnasium as gym
|
||||
from gymnasium.core import WrapperActType, WrapperObsType
|
||||
from gymnasium.error import DependencyNotInstalled
|
||||
|
||||
|
||||
try:
|
||||
import torch
|
||||
|
||||
Device = Union[str, torch.device]
|
||||
except ImportError:
|
||||
raise DependencyNotInstalled(
|
||||
"Torch is not installed therefore cannot call `torch_to_numpy`, run `pip install torch`"
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["NumpyToTorch", "torch_to_numpy", "numpy_to_torch"]
|
||||
|
||||
|
||||
@functools.singledispatch
|
||||
def torch_to_numpy(value: Any) -> Any:
|
||||
"""Converts a PyTorch Tensor into a NumPy Array."""
|
||||
raise Exception(
|
||||
f"No known conversion for Torch type ({type(value)}) to NumPy registered. Report as issue on github."
|
||||
)
|
||||
|
||||
|
||||
@torch_to_numpy.register(numbers.Number)
|
||||
@torch_to_numpy.register(torch.Tensor)
|
||||
def _number_torch_to_numpy(value: numbers.Number | torch.Tensor) -> Any:
|
||||
"""Convert a python number (int, float, complex) and torch.Tensor to a numpy array."""
|
||||
return np.array(value)
|
||||
|
||||
|
||||
@torch_to_numpy.register(abc.Mapping)
|
||||
def _mapping_torch_to_numpy(value: Mapping[str, Any]) -> Mapping[str, Any]:
|
||||
"""Converts a mapping of PyTorch Tensors into a Dictionary of Jax Array."""
|
||||
return type(value)(**{k: torch_to_numpy(v) for k, v in value.items()})
|
||||
|
||||
|
||||
@torch_to_numpy.register(abc.Iterable)
|
||||
def _iterable_torch_to_numpy(value: Iterable[Any]) -> Iterable[Any]:
|
||||
"""Converts an Iterable from PyTorch Tensors to an iterable of Jax Array."""
|
||||
return type(value)(torch_to_numpy(v) for v in value)
|
||||
|
||||
|
||||
@functools.singledispatch
|
||||
def numpy_to_torch(value: Any, device: Device | None = None) -> Any:
|
||||
"""Converts a Jax Array into a PyTorch Tensor."""
|
||||
raise Exception(
|
||||
f"No known conversion for NumPy type ({type(value)}) to PyTorch registered. Report as issue on github."
|
||||
)
|
||||
|
||||
|
||||
@numpy_to_torch.register(numbers.Number)
|
||||
@numpy_to_torch.register(np.ndarray)
|
||||
def _numpy_to_torch(value: np.ndarray, device: Device | None = None) -> torch.Tensor:
|
||||
"""Converts a Jax Array into a PyTorch Tensor."""
|
||||
assert torch is not None
|
||||
tensor = torch.tensor(value)
|
||||
if device:
|
||||
return tensor.to(device=device)
|
||||
return tensor
|
||||
|
||||
|
||||
@numpy_to_torch.register(abc.Mapping)
|
||||
def _numpy_mapping_to_torch(
|
||||
value: Mapping[str, Any], device: Device | None = None
|
||||
) -> Mapping[str, Any]:
|
||||
"""Converts a mapping of Jax Array into a Dictionary of PyTorch Tensors."""
|
||||
return type(value)(**{k: numpy_to_torch(v, device) for k, v in value.items()})
|
||||
|
||||
|
||||
@numpy_to_torch.register(abc.Iterable)
|
||||
def _numpy_iterable_to_torch(
|
||||
value: Iterable[Any], device: Device | None = None
|
||||
) -> Iterable[Any]:
|
||||
"""Converts an Iterable from Jax Array to an iterable of PyTorch Tensors."""
|
||||
return type(value)(tuple(numpy_to_torch(v, device) for v in value))
|
||||
|
||||
|
||||
class NumpyToTorch(gym.Wrapper, gym.utils.RecordConstructorArgs):
|
||||
"""Wraps a NumPy-based environment such that it can be interacted with PyTorch Tensors.
|
||||
|
||||
Actions must be provided as PyTorch Tensors and observations will be returned as PyTorch Tensors.
|
||||
A vector version of the wrapper exists, :class:`gymnasium.wrappers.vector.NumpyToTorch`.
|
||||
|
||||
Note:
|
||||
For ``rendered`` this is returned as a NumPy array not a pytorch Tensor.
|
||||
|
||||
Example:
|
||||
>>> import torch
|
||||
>>> import gymnasium as gym
|
||||
>>> env = gym.make("CartPole-v1")
|
||||
>>> env = NumpyToTorch(env)
|
||||
>>> obs, _ = env.reset(seed=123)
|
||||
>>> type(obs)
|
||||
<class 'torch.Tensor'>
|
||||
>>> action = torch.tensor(env.action_space.sample())
|
||||
>>> obs, reward, terminated, truncated, info = env.step(action)
|
||||
>>> type(obs)
|
||||
<class 'torch.Tensor'>
|
||||
>>> type(reward)
|
||||
<class 'float'>
|
||||
>>> type(terminated)
|
||||
<class 'bool'>
|
||||
>>> type(truncated)
|
||||
<class 'bool'>
|
||||
|
||||
Change logs:
|
||||
* v1.0.0 - Initially added
|
||||
"""
|
||||
|
||||
def __init__(self, env: gym.Env, device: Device | None = None):
|
||||
"""Wrapper class to change inputs and outputs of environment to PyTorch tensors.
|
||||
|
||||
Args:
|
||||
env: The Jax-based environment to wrap
|
||||
device: The device the torch Tensors should be moved to
|
||||
"""
|
||||
gym.utils.RecordConstructorArgs.__init__(self, device=device)
|
||||
gym.Wrapper.__init__(self, env)
|
||||
|
||||
self.device: Device | None = device
|
||||
|
||||
def step(
|
||||
self, action: WrapperActType
|
||||
) -> tuple[WrapperObsType, SupportsFloat, bool, bool, dict]:
|
||||
"""Using a PyTorch based action that is converted to NumPy to be used by the environment.
|
||||
|
||||
Args:
|
||||
action: A PyTorch-based action
|
||||
|
||||
Returns:
|
||||
The PyTorch-based Tensor next observation, reward, termination, truncation, and extra info
|
||||
"""
|
||||
jax_action = torch_to_numpy(action)
|
||||
obs, reward, terminated, truncated, info = self.env.step(jax_action)
|
||||
|
||||
return (
|
||||
numpy_to_torch(obs, self.device),
|
||||
float(reward),
|
||||
bool(terminated),
|
||||
bool(truncated),
|
||||
numpy_to_torch(info, self.device),
|
||||
)
|
||||
|
||||
def reset(
|
||||
self, *, seed: int | None = None, options: dict[str, Any] | None = None
|
||||
) -> tuple[WrapperObsType, dict[str, Any]]:
|
||||
"""Resets the environment returning PyTorch-based observation and info.
|
||||
|
||||
Args:
|
||||
seed: The seed for resetting the environment
|
||||
options: The options for resetting the environment, these are converted to jax arrays.
|
||||
|
||||
Returns:
|
||||
PyTorch-based observations and info
|
||||
"""
|
||||
if options:
|
||||
options = torch_to_numpy(options)
|
||||
|
||||
return numpy_to_torch(self.env.reset(seed=seed, options=options), self.device)
|
Reference in New Issue
Block a user