mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-23 15:04:20 +00:00
fix for issue 1256 (Box(low=0, high=255, dtype='uint8').sample() returned zeros) (#1307)
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
import json # note: ujson fails this test due to float equality
|
||||
import json # note: ujson fails this test due to float equality
|
||||
from copy import copy
|
||||
|
||||
import numpy as np
|
||||
@@ -8,14 +8,14 @@ from gym.spaces import Tuple, Box, Discrete, MultiDiscrete, MultiBinary, Dict
|
||||
|
||||
|
||||
@pytest.mark.parametrize("space", [
|
||||
Discrete(3),
|
||||
Tuple([Discrete(5), Discrete(10)]),
|
||||
Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]),
|
||||
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
||||
MultiDiscrete([2, 2, 100]),
|
||||
Dict({"position": Discrete(5),
|
||||
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}),
|
||||
])
|
||||
Discrete(3),
|
||||
Tuple([Discrete(5), Discrete(10)]),
|
||||
Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]),
|
||||
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
||||
MultiDiscrete([2, 2, 100]),
|
||||
Dict({"position": Discrete(5),
|
||||
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}),
|
||||
])
|
||||
def test_roundtripping(space):
|
||||
sample_1 = space.sample()
|
||||
sample_2 = space.sample()
|
||||
@@ -37,16 +37,16 @@ def test_roundtripping(space):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("space", [
|
||||
Discrete(3),
|
||||
Box(low=np.array([-10, 0]),high=np.array([10, 10])),
|
||||
Tuple([Discrete(5), Discrete(10)]),
|
||||
Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]),
|
||||
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
||||
MultiDiscrete([2, 2, 100]),
|
||||
MultiBinary(6),
|
||||
Dict({"position": Discrete(5),
|
||||
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}),
|
||||
])
|
||||
Discrete(3),
|
||||
Box(low=np.array([-10, 0]), high=np.array([10, 10]), dtype=np.float32),
|
||||
Tuple([Discrete(5), Discrete(10)]),
|
||||
Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]),
|
||||
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
||||
MultiDiscrete([2, 2, 100]),
|
||||
MultiBinary(6),
|
||||
Dict({"position": Discrete(5),
|
||||
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}),
|
||||
])
|
||||
def test_equality(space):
|
||||
space1 = space
|
||||
space2 = copy(space)
|
||||
@@ -54,15 +54,32 @@ def test_equality(space):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("spaces", [
|
||||
(Discrete(3), Discrete(4)),
|
||||
(MultiDiscrete([2, 2, 100]), MultiDiscrete([2, 2, 8])),
|
||||
(MultiBinary(8), MultiBinary(7)),
|
||||
(Box(low=np.array([-10, 0]), high=np.array([10, 10]), dtype=np.float32),
|
||||
Box(low=np.array([-10, 0]), high=np.array([10, 9]), dtype=np.float32)),
|
||||
(Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(1), Discrete(10)])),
|
||||
(Dict({"position": Discrete(5)}), Dict({"position": Discrete(4)})),
|
||||
(Dict({"position": Discrete(5)}), Dict({"speed": Discrete(5)})),
|
||||
])
|
||||
(Discrete(3), Discrete(4)),
|
||||
(MultiDiscrete([2, 2, 100]), MultiDiscrete([2, 2, 8])),
|
||||
(MultiBinary(8), MultiBinary(7)),
|
||||
(Box(low=np.array([-10, 0]), high=np.array([10, 10]), dtype=np.float32),
|
||||
Box(low=np.array([-10, 0]), high=np.array([10, 9]), dtype=np.float32)),
|
||||
(Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(1), Discrete(10)])),
|
||||
(Dict({"position": Discrete(5)}), Dict({"position": Discrete(4)})),
|
||||
(Dict({"position": Discrete(5)}), Dict({"speed": Discrete(5)})),
|
||||
])
|
||||
def test_inequality(spaces):
|
||||
space1, space2 = spaces
|
||||
assert space1 != space2, "Expected {} != {}".format(space1, space2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("space", [
|
||||
Discrete(5),
|
||||
Box(low=0, high=255, shape=(2,), dtype='uint8'),
|
||||
])
|
||||
def test_sample(space):
|
||||
space.seed(0)
|
||||
n_trials = 100
|
||||
samples = np.array([space.sample() for _ in range(n_trials)])
|
||||
if isinstance(space, Box):
|
||||
expected_mean = (space.high + space.low) / 2
|
||||
elif isinstance(space, Discrete):
|
||||
expected_mean = space.n / 2
|
||||
else:
|
||||
raise NotImplementedError
|
||||
np.testing.assert_allclose(expected_mean, samples.mean(), atol=3.0 * samples.std())
|
||||
|
Reference in New Issue
Block a user