Update third_party_environments.md first-party environments section (#1026)

This commit is contained in:
Kallinteris Andreas
2024-04-17 10:23:51 +00:00
committed by GitHub
parent b6d7f51ef6
commit 3d2a8957a5

View File

@@ -2,16 +2,26 @@
:tocdepth: 2 :tocdepth: 2
``` ```
# Third-Party Environments ## First-Party Environments
The Farama Foundation maintains a number of other [projects](https://farama.org/projects), which use the Gymnasium API, environments include:
The Farama Foundation maintains a number of other [projects](https://farama.org/projects), most of which use Gymnasium. Topics include:
multi-agent RL ([PettingZoo](https://pettingzoo.farama.org/)),
offline-RL ([Minari](https://minari.farama.org/)),
gridworlds ([Minigrid](https://minigrid.farama.org/)), gridworlds ([Minigrid](https://minigrid.farama.org/)),
robotics ([Gymnasium-Robotics](https://robotics.farama.org/)), robotics ([Gymnasium-Robotics](https://robotics.farama.org/)),
3D navigation ([Miniworld](https://miniworld.farama.org/)),
web interaction ([MiniWoB++](https://miniwob.farama.org/))
arcade games ([Arcade Learning Environment](https://github.com/Farama-Foundation/Arcade-Learning-Environment))
Doom ([ViZDoom](https://vizdoom.farama.org/))
Meta-objective robotics ([Metaworld](https://metaworld.farama.org/))
autonomous driving ([HighwayEnv](https://highway-env.farama.org/))
Retro Games ([stable-retro](https://github.com/Farama-Foundation/stable-retro)), and many more.
The Farama Foundation also maintains alternate APIs for RL, including:
multi-agent RL ([PettingZoo](https://pettingzoo.farama.org/)),
offline-RL ([Minari](https://minari.farama.org/)),
multi-objective RL ([MO-Gymnasium](https://mo-gymnasium.farama.org/)) multi-objective RL ([MO-Gymnasium](https://mo-gymnasium.farama.org/))
many-agent RL ([MAgent2](https://magent2.farama.org/)), goal-RL ([Gymnasium-Robotics](https://robotics.farama.org/)),
3D navigation ([Miniworld](https://miniworld.farama.org/)), and many more.
## Third-party environments with Gymnasium ## Third-party environments with Gymnasium
@@ -82,13 +92,6 @@ An environment for guiding automated theorem provers based on saturation algorit
Gym Trading Env simulates stock (or crypto) market from historical data. It was designed to be fast and easily customizable. Gym Trading Env simulates stock (or crypto) market from historical data. It was designed to be fast and easily customizable.
### [highway-env: Autonomous driving and tactical decision-making tasks](https://github.com/eleurent/highway-env)
![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.27.1-blue)
![GitHub stars](https://img.shields.io/github/stars/eleurent/highway-env)
An environment for behavioral planning in autonomous driving, with an emphasis on high-level perception and decision rather than low-level sensing and control.
### [matrix-mdp: Easily create discrete MDPs](https://github.com/Paul-543NA/matrix-mdp-gym) ### [matrix-mdp: Easily create discrete MDPs](https://github.com/Paul-543NA/matrix-mdp-gym)
![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.26.2-blue) ![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.26.2-blue)
@@ -145,13 +148,6 @@ spark-sched-sim simulates Spark clusters for RL-based job scheduling algorithms.
![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.29.1-blue) ![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.29.1-blue)
![GitHub stars](https://img.shields.io/github/stars/ArchieGertsman/spark-sched-sim) ![GitHub stars](https://img.shields.io/github/stars/ArchieGertsman/spark-sched-sim)
### [stable-retro: Classic retro games, a maintained version of OpenAI Retro](https://github.com/Farama-Foundation/stable-retro)
![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.27.1-blue)
![GitHub stars](https://img.shields.io/github/stars/Farama-Foundation/stable-retro)
Supported fork of [gym-retro](https://openai.com/research/gym-retro): turn classic video games into Gymnasium environments.
### [sumo-rl: Reinforcement Learning using SUMO traffic simulator](https://github.com/LucasAlegre/sumo-rl) ### [sumo-rl: Reinforcement Learning using SUMO traffic simulator](https://github.com/LucasAlegre/sumo-rl)
![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.26.3-blue) ![Gymnasium version dependency](https://img.shields.io/badge/Gymnasium-v0.26.3-blue)