mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 22:04:31 +00:00
Tutorials galleries (#258)
This commit is contained in:
2
docs/tutorials/README.rst
Normal file
2
docs/tutorials/README.rst
Normal file
@@ -0,0 +1,2 @@
|
||||
Tutorials
|
||||
=========
|
@@ -1,29 +0,0 @@
|
||||
"""
|
||||
Demo tutorial script
|
||||
=========================
|
||||
|
||||
This file is not listed in the website and serves only to give an example of a tutorial file. And is mostly a copy-paste from sphinx-gallery.
|
||||
"""
|
||||
|
||||
# %%
|
||||
# This is a section header
|
||||
# ------------------------
|
||||
# This is the first section!
|
||||
# The `#%%` signifies to Sphinx-Gallery that this text should be rendered as
|
||||
# rST and if using one of the above IDE/plugin's, also signifies the start of a
|
||||
# 'code block'.
|
||||
|
||||
# This line won't be rendered as rST because there's a space after the last block.
|
||||
myvariable = 2
|
||||
print(f"my variable is {myvariable}")
|
||||
# This is the end of the 'code block' (if using an above IDE). All code within
|
||||
# this block can be easily executed all at once.
|
||||
|
||||
# %%
|
||||
# This is another section header
|
||||
# ------------------------------
|
||||
#
|
||||
# In the built documentation, it will be rendered as rST after the code above!
|
||||
# This is also another code block.
|
||||
|
||||
print(f"my variable plus 2 is {myvariable + 2}")
|
2
docs/tutorials/gymnasium_basics/README.rst
Normal file
2
docs/tutorials/gymnasium_basics/README.rst
Normal file
@@ -0,0 +1,2 @@
|
||||
Gymnasium Basics
|
||||
----------------
|
@@ -1,13 +1,13 @@
|
||||
"""
|
||||
Training A2C with Vector Envs and Domain Randomization
|
||||
=================================
|
||||
======================================================
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# %%
|
||||
# Introduction
|
||||
# ------------------------------
|
||||
# ------------
|
||||
#
|
||||
# In this tutorial, you'll learn how to use vectorized environments to train an Advantage Actor-Critic agent.
|
||||
# We are going to use A2C, which is the synchronous version of the A3C algorithm [1].
|
||||
@@ -56,7 +56,7 @@ import gymnasium as gym
|
||||
|
||||
# %%
|
||||
# Advantage Actor-Critic (A2C)
|
||||
# ------------------------------
|
||||
# ----------------------------
|
||||
#
|
||||
# The Actor-Critic combines elements of value-based and policy-based methods. In A2C, the agent has two separate neural networks:
|
||||
# a critic network that estimates the state-value function, and an actor network that outputs logits for a categorical probability distribution over all actions.
|
||||
@@ -241,7 +241,7 @@ class A2C(nn.Module):
|
||||
|
||||
# %%
|
||||
# Using Vectorized Environments
|
||||
# ------------------------------
|
||||
# -----------------------------
|
||||
#
|
||||
# When you calculate the losses for the two Neural Networks over only one epoch, it might have a high variance. With vectorized environments,
|
||||
# we can play with `n_envs` in parallel and thus get up to a linear speedup (meaning that in theory, we collect samples `n_envs` times quicker)
|
||||
@@ -259,7 +259,7 @@ envs = gym.vector.make("LunarLander-v2", num_envs=3, max_episode_steps=600)
|
||||
|
||||
# %%
|
||||
# Domain Randomization
|
||||
# ------------------------------
|
||||
# --------------------
|
||||
#
|
||||
# If we want to randomize the environment for training to get more robust agents (that can deal with different parameterizations of an environment
|
||||
# and theirfore might have a higher degree of generalization), we can set the desired parameters manually or use a pseudo-random number generator to generate them.
|
||||
@@ -337,7 +337,7 @@ envs = gym.vector.AsyncVectorEnv(
|
||||
|
||||
# %%
|
||||
# Setup
|
||||
# ------------------------------
|
||||
# -----
|
||||
#
|
||||
|
||||
# environment hyperparams
|
||||
@@ -398,7 +398,7 @@ agent = A2C(obs_shape, action_shape, device, critic_lr, actor_lr, n_envs)
|
||||
|
||||
# %%
|
||||
# Training the A2C Agent
|
||||
# ------------------------------
|
||||
# ----------------------
|
||||
#
|
||||
# For our training loop, we are using the `RecordEpisodeStatistics` wrapper to record the episode lengths and returns and we are also saving
|
||||
# the losses and entropies to plot them after the agent finished training.
|
||||
@@ -478,7 +478,7 @@ for sample_phase in tqdm(range(n_updates)):
|
||||
|
||||
# %%
|
||||
# Plotting
|
||||
# ------------------------------
|
||||
# --------
|
||||
#
|
||||
|
||||
""" plot the results """
|
||||
@@ -550,7 +550,7 @@ plt.show()
|
||||
|
||||
# %%
|
||||
# Performance Analysis of Synchronous and Asynchronous Vectorized Environments
|
||||
# ------------------------------
|
||||
# ----------------------------------------------------------------------------
|
||||
#
|
||||
|
||||
# %%
|
||||
@@ -608,7 +608,7 @@ plt.show()
|
||||
|
||||
# %%
|
||||
# Saving/ Loading Weights
|
||||
# ------------------------------
|
||||
# -----------------------
|
||||
#
|
||||
|
||||
save_weights = False
|
||||
@@ -638,7 +638,7 @@ if load_weights:
|
||||
|
||||
# %%
|
||||
# Showcase the Agent
|
||||
# ------------------------------
|
||||
# ------------------
|
||||
#
|
||||
|
||||
""" play a couple of showcase episodes """
|
||||
@@ -690,7 +690,7 @@ env.close()
|
||||
|
||||
# %%
|
||||
# Try playing the environment yourself
|
||||
# ------------------------------
|
||||
# ------------------------------------
|
||||
#
|
||||
|
||||
# from gymnasium.utils.play import play
|
||||
@@ -701,7 +701,7 @@ env.close()
|
||||
|
||||
# %%
|
||||
# References
|
||||
# ------------------------------
|
||||
# ----------
|
||||
#
|
||||
# [1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu. "Asynchronous Methods for Deep Reinforcement Learning" ICML (2016).
|
||||
#
|
2
docs/tutorials/training_agents/README.rst
Normal file
2
docs/tutorials/training_agents/README.rst
Normal file
@@ -0,0 +1,2 @@
|
||||
Training Agents
|
||||
---------------
|
Reference in New Issue
Block a user