mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
Tutorials galleries (#258)
This commit is contained in:
9
docs/.gitignore
vendored
9
docs/.gitignore
vendored
@@ -4,9 +4,12 @@ __pycache__
|
||||
build/
|
||||
_build/
|
||||
|
||||
tutorials/*
|
||||
!tutorials/*.md
|
||||
!tutorials/*.py
|
||||
tutorials/**/*.pickle
|
||||
tutorials/**/images/
|
||||
tutorials/**/*.rst
|
||||
tutorials/**/*.ipynb
|
||||
tutorials/**/*.zip
|
||||
!tutorials/**/README.rst
|
||||
|
||||
environments/**/list.html
|
||||
environments/**/complete_list.html
|
||||
|
33
docs/conf.py
33
docs/conf.py
@@ -16,9 +16,10 @@
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
import os
|
||||
import re
|
||||
from typing import Any, Dict
|
||||
|
||||
from furo import gen_tutorials
|
||||
import sphinx_gallery.gen_rst
|
||||
|
||||
import gymnasium
|
||||
|
||||
@@ -43,6 +44,7 @@ extensions = [
|
||||
"sphinx.ext.githubpages",
|
||||
"myst_parser",
|
||||
"furo.gen_tutorials",
|
||||
"sphinx_gallery.gen_gallery",
|
||||
"sphinx_github_changelog",
|
||||
]
|
||||
|
||||
@@ -52,7 +54,7 @@ templates_path = ["_templates"]
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = ["tutorials/demo.rst"]
|
||||
exclude_patterns = ["tutorials/README.rst"]
|
||||
|
||||
# Napoleon settings
|
||||
napoleon_use_ivar = True
|
||||
@@ -95,10 +97,29 @@ html_css_files = []
|
||||
|
||||
# -- Generate Tutorials -------------------------------------------------
|
||||
|
||||
gen_tutorials.generate(
|
||||
os.path.dirname(__file__),
|
||||
os.path.join(os.path.dirname(__file__), "tutorials"),
|
||||
)
|
||||
sphinx_gallery.gen_rst.EXAMPLE_HEADER = """
|
||||
.. DO NOT EDIT.
|
||||
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
|
||||
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
|
||||
.. "{0}"
|
||||
.. LINE NUMBERS ARE GIVEN BELOW.
|
||||
|
||||
.. rst-class:: sphx-glr-example-title
|
||||
|
||||
.. _sphx_glr_{1}:
|
||||
|
||||
"""
|
||||
|
||||
sphinx_gallery_conf = {
|
||||
"ignore_pattern": r"__init__\.py",
|
||||
"examples_dirs": "./tutorials",
|
||||
"gallery_dirs": "./tutorials",
|
||||
"show_signature": False,
|
||||
"show_memory": False,
|
||||
"min_reported_time": float("inf"),
|
||||
"filename_pattern": f"{re.escape(os.sep)}run_",
|
||||
"default_thumb_file": "_static/img/gymnasium-github.png",
|
||||
}
|
||||
|
||||
# -- Generate Changelog -------------------------------------------------
|
||||
|
||||
|
@@ -67,7 +67,7 @@ environments/third_party_environments
|
||||
:glob:
|
||||
:caption: Tutorials
|
||||
|
||||
tutorials/*
|
||||
tutorials/**/index
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
|
@@ -1,7 +1,7 @@
|
||||
sphinx
|
||||
sphinx-autobuild
|
||||
myst-parser
|
||||
sphinx_gallery
|
||||
git+https://github.com/sphinx-gallery/sphinx-gallery.git@4006662c8c1984453a247dc6d3df6260e5b00f4b#egg=sphinx_gallery
|
||||
git+https://github.com/Farama-Foundation/Celshast#egg=furo
|
||||
moviepy
|
||||
pygame
|
||||
|
2
docs/tutorials/README.rst
Normal file
2
docs/tutorials/README.rst
Normal file
@@ -0,0 +1,2 @@
|
||||
Tutorials
|
||||
=========
|
@@ -1,29 +0,0 @@
|
||||
"""
|
||||
Demo tutorial script
|
||||
=========================
|
||||
|
||||
This file is not listed in the website and serves only to give an example of a tutorial file. And is mostly a copy-paste from sphinx-gallery.
|
||||
"""
|
||||
|
||||
# %%
|
||||
# This is a section header
|
||||
# ------------------------
|
||||
# This is the first section!
|
||||
# The `#%%` signifies to Sphinx-Gallery that this text should be rendered as
|
||||
# rST and if using one of the above IDE/plugin's, also signifies the start of a
|
||||
# 'code block'.
|
||||
|
||||
# This line won't be rendered as rST because there's a space after the last block.
|
||||
myvariable = 2
|
||||
print(f"my variable is {myvariable}")
|
||||
# This is the end of the 'code block' (if using an above IDE). All code within
|
||||
# this block can be easily executed all at once.
|
||||
|
||||
# %%
|
||||
# This is another section header
|
||||
# ------------------------------
|
||||
#
|
||||
# In the built documentation, it will be rendered as rST after the code above!
|
||||
# This is also another code block.
|
||||
|
||||
print(f"my variable plus 2 is {myvariable + 2}")
|
2
docs/tutorials/gymnasium_basics/README.rst
Normal file
2
docs/tutorials/gymnasium_basics/README.rst
Normal file
@@ -0,0 +1,2 @@
|
||||
Gymnasium Basics
|
||||
----------------
|
@@ -1,13 +1,13 @@
|
||||
"""
|
||||
Training A2C with Vector Envs and Domain Randomization
|
||||
=================================
|
||||
======================================================
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# %%
|
||||
# Introduction
|
||||
# ------------------------------
|
||||
# ------------
|
||||
#
|
||||
# In this tutorial, you'll learn how to use vectorized environments to train an Advantage Actor-Critic agent.
|
||||
# We are going to use A2C, which is the synchronous version of the A3C algorithm [1].
|
||||
@@ -56,7 +56,7 @@ import gymnasium as gym
|
||||
|
||||
# %%
|
||||
# Advantage Actor-Critic (A2C)
|
||||
# ------------------------------
|
||||
# ----------------------------
|
||||
#
|
||||
# The Actor-Critic combines elements of value-based and policy-based methods. In A2C, the agent has two separate neural networks:
|
||||
# a critic network that estimates the state-value function, and an actor network that outputs logits for a categorical probability distribution over all actions.
|
||||
@@ -241,7 +241,7 @@ class A2C(nn.Module):
|
||||
|
||||
# %%
|
||||
# Using Vectorized Environments
|
||||
# ------------------------------
|
||||
# -----------------------------
|
||||
#
|
||||
# When you calculate the losses for the two Neural Networks over only one epoch, it might have a high variance. With vectorized environments,
|
||||
# we can play with `n_envs` in parallel and thus get up to a linear speedup (meaning that in theory, we collect samples `n_envs` times quicker)
|
||||
@@ -259,7 +259,7 @@ envs = gym.vector.make("LunarLander-v2", num_envs=3, max_episode_steps=600)
|
||||
|
||||
# %%
|
||||
# Domain Randomization
|
||||
# ------------------------------
|
||||
# --------------------
|
||||
#
|
||||
# If we want to randomize the environment for training to get more robust agents (that can deal with different parameterizations of an environment
|
||||
# and theirfore might have a higher degree of generalization), we can set the desired parameters manually or use a pseudo-random number generator to generate them.
|
||||
@@ -337,7 +337,7 @@ envs = gym.vector.AsyncVectorEnv(
|
||||
|
||||
# %%
|
||||
# Setup
|
||||
# ------------------------------
|
||||
# -----
|
||||
#
|
||||
|
||||
# environment hyperparams
|
||||
@@ -398,7 +398,7 @@ agent = A2C(obs_shape, action_shape, device, critic_lr, actor_lr, n_envs)
|
||||
|
||||
# %%
|
||||
# Training the A2C Agent
|
||||
# ------------------------------
|
||||
# ----------------------
|
||||
#
|
||||
# For our training loop, we are using the `RecordEpisodeStatistics` wrapper to record the episode lengths and returns and we are also saving
|
||||
# the losses and entropies to plot them after the agent finished training.
|
||||
@@ -478,7 +478,7 @@ for sample_phase in tqdm(range(n_updates)):
|
||||
|
||||
# %%
|
||||
# Plotting
|
||||
# ------------------------------
|
||||
# --------
|
||||
#
|
||||
|
||||
""" plot the results """
|
||||
@@ -550,7 +550,7 @@ plt.show()
|
||||
|
||||
# %%
|
||||
# Performance Analysis of Synchronous and Asynchronous Vectorized Environments
|
||||
# ------------------------------
|
||||
# ----------------------------------------------------------------------------
|
||||
#
|
||||
|
||||
# %%
|
||||
@@ -608,7 +608,7 @@ plt.show()
|
||||
|
||||
# %%
|
||||
# Saving/ Loading Weights
|
||||
# ------------------------------
|
||||
# -----------------------
|
||||
#
|
||||
|
||||
save_weights = False
|
||||
@@ -638,7 +638,7 @@ if load_weights:
|
||||
|
||||
# %%
|
||||
# Showcase the Agent
|
||||
# ------------------------------
|
||||
# ------------------
|
||||
#
|
||||
|
||||
""" play a couple of showcase episodes """
|
||||
@@ -690,7 +690,7 @@ env.close()
|
||||
|
||||
# %%
|
||||
# Try playing the environment yourself
|
||||
# ------------------------------
|
||||
# ------------------------------------
|
||||
#
|
||||
|
||||
# from gymnasium.utils.play import play
|
||||
@@ -701,7 +701,7 @@ env.close()
|
||||
|
||||
# %%
|
||||
# References
|
||||
# ------------------------------
|
||||
# ----------
|
||||
#
|
||||
# [1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu. "Asynchronous Methods for Deep Reinforcement Learning" ICML (2016).
|
||||
#
|
2
docs/tutorials/training_agents/README.rst
Normal file
2
docs/tutorials/training_agents/README.rst
Normal file
@@ -0,0 +1,2 @@
|
||||
Training Agents
|
||||
---------------
|
Reference in New Issue
Block a user