mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-28 01:07:11 +00:00
Rename to gymnasium
This commit is contained in:
118
gymnasium/spaces/multi_binary.py
Normal file
118
gymnasium/spaces/multi_binary.py
Normal file
@@ -0,0 +1,118 @@
|
||||
"""Implementation of a space that consists of binary np.ndarrays of a fixed shape."""
|
||||
from typing import Optional, Sequence, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gymnasium.spaces.space import Space
|
||||
|
||||
|
||||
class MultiBinary(Space[np.ndarray]):
|
||||
"""An n-shape binary space.
|
||||
|
||||
Elements of this space are binary arrays of a shape that is fixed during construction.
|
||||
|
||||
Example Usage::
|
||||
|
||||
>>> observation_space = MultiBinary(5)
|
||||
>>> observation_space.sample()
|
||||
array([0, 1, 0, 1, 0], dtype=int8)
|
||||
>>> observation_space = MultiBinary([3, 2])
|
||||
>>> observation_space.sample()
|
||||
array([[0, 0],
|
||||
[0, 1],
|
||||
[1, 1]], dtype=int8)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n: Union[np.ndarray, Sequence[int], int],
|
||||
seed: Optional[Union[int, np.random.Generator]] = None,
|
||||
):
|
||||
"""Constructor of :class:`MultiBinary` space.
|
||||
|
||||
Args:
|
||||
n: This will fix the shape of elements of the space. It can either be an integer (if the space is flat)
|
||||
or some sort of sequence (tuple, list or np.ndarray) if there are multiple axes.
|
||||
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the space.
|
||||
"""
|
||||
if isinstance(n, (Sequence, np.ndarray)):
|
||||
self.n = input_n = tuple(int(i) for i in n)
|
||||
assert (np.asarray(input_n) > 0).all() # n (counts) have to be positive
|
||||
else:
|
||||
self.n = n = int(n)
|
||||
input_n = (n,)
|
||||
assert (np.asarray(input_n) > 0).all() # n (counts) have to be positive
|
||||
|
||||
super().__init__(input_n, np.int8, seed)
|
||||
|
||||
@property
|
||||
def shape(self) -> Tuple[int, ...]:
|
||||
"""Has stricter type than gymnasium.Space - never None."""
|
||||
return self._shape # type: ignore
|
||||
|
||||
@property
|
||||
def is_np_flattenable(self):
|
||||
"""Checks whether this space can be flattened to a :class:`spaces.Box`."""
|
||||
return True
|
||||
|
||||
def sample(self, mask: Optional[np.ndarray] = None) -> np.ndarray:
|
||||
"""Generates a single random sample from this space.
|
||||
|
||||
A sample is drawn by independent, fair coin tosses (one toss per binary variable of the space).
|
||||
|
||||
Args:
|
||||
mask: An optional np.ndarray to mask samples with expected shape of ``space.shape``.
|
||||
For mask == 0 then the samples will be 0 and mask == 1 then random samples will be generated.
|
||||
The expected mask shape is the space shape and mask dtype is `np.int8`.
|
||||
|
||||
Returns:
|
||||
Sampled values from space
|
||||
"""
|
||||
if mask is not None:
|
||||
assert isinstance(
|
||||
mask, np.ndarray
|
||||
), f"The expected type of the mask is np.ndarray, actual type: {type(mask)}"
|
||||
assert (
|
||||
mask.dtype == np.int8
|
||||
), f"The expected dtype of the mask is np.int8, actual dtype: {mask.dtype}"
|
||||
assert (
|
||||
mask.shape == self.shape
|
||||
), f"The expected shape of the mask is {self.shape}, actual shape: {mask.shape}"
|
||||
assert np.all(
|
||||
(mask == 0) | (mask == 1) | (mask == 2)
|
||||
), f"All values of a mask should be 0, 1 or 2, actual values: {mask}"
|
||||
|
||||
return np.where(
|
||||
mask == 2,
|
||||
self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype),
|
||||
mask.astype(self.dtype),
|
||||
)
|
||||
|
||||
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype)
|
||||
|
||||
def contains(self, x) -> bool:
|
||||
"""Return boolean specifying if x is a valid member of this space."""
|
||||
if isinstance(x, Sequence):
|
||||
x = np.array(x) # Promote list to array for contains check
|
||||
|
||||
return bool(
|
||||
isinstance(x, np.ndarray)
|
||||
and self.shape == x.shape
|
||||
and np.all((x == 0) | (x == 1))
|
||||
)
|
||||
|
||||
def to_jsonable(self, sample_n) -> list:
|
||||
"""Convert a batch of samples from this space to a JSONable data type."""
|
||||
return np.array(sample_n).tolist()
|
||||
|
||||
def from_jsonable(self, sample_n) -> list:
|
||||
"""Convert a JSONable data type to a batch of samples from this space."""
|
||||
return [np.asarray(sample, self.dtype) for sample in sample_n]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Gives a string representation of this space."""
|
||||
return f"MultiBinary({self.n})"
|
||||
|
||||
def __eq__(self, other) -> bool:
|
||||
"""Check whether `other` is equivalent to this instance."""
|
||||
return isinstance(other, MultiBinary) and self.n == other.n
|
Reference in New Issue
Block a user