mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 13:54:31 +00:00
Updated Wrapper docs (#173)
This commit is contained in:
@@ -12,6 +12,11 @@ wrappers/observation_wrappers
|
||||
wrappers/reward_wrappers
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: gymnasium.wrappers
|
||||
|
||||
```
|
||||
|
||||
## gymnasium.Wrapper
|
||||
|
||||
```{eval-rst}
|
||||
@@ -35,6 +40,13 @@ wrappers/reward_wrappers
|
||||
.. autoproperty:: gymnasium.Wrapper.spec
|
||||
.. autoproperty:: gymnasium.Wrapper.metadata
|
||||
.. autoproperty:: gymnasium.Wrapper.np_random
|
||||
.. attribute:: gymnasium.Wrapper.env
|
||||
|
||||
The environment (one level underneath) this wrapper.
|
||||
|
||||
This may itself be a wrapped environment.
|
||||
To obtain the environment underneath all layers of wrappers, use :attr:`gymnasium.Wrapper.unwrapped`.
|
||||
|
||||
.. autoproperty:: gymnasium.Wrapper.unwrapped
|
||||
```
|
||||
|
||||
@@ -124,43 +136,4 @@ wrapper in the page on the wrapper type
|
||||
* - :class:`VectorListInfo`
|
||||
- Misc Wrapper
|
||||
- This wrapper will convert the info of a vectorized environment from the `dict` format to a `list` of dictionaries where the i-th dictionary contains info of the i-th environment.
|
||||
```
|
||||
|
||||
## Implementing a custom wrapper
|
||||
|
||||
Sometimes you might need to implement a wrapper that does some more complicated modifications (e.g. modify the
|
||||
reward based on data in `info` or change the rendering behavior).
|
||||
Such wrappers can be implemented by inheriting from Misc Wrapper.
|
||||
|
||||
- You can set a new action or observation space by defining `self.action_space` or `self.observation_space` in `__init__`, respectively
|
||||
- You can set new metadata and reward range by defining `self.metadata` and `self.reward_range` in `__init__`, respectively
|
||||
- You can override `step`, `render`, `close` etc. If you do this, you can access the environment that was passed
|
||||
to your wrapper (which *still* might be wrapped in some other wrapper) by accessing the attribute `self.env`.
|
||||
|
||||
Let's also take a look at an example for this case. Most MuJoCo environments return a reward that consists
|
||||
of different terms: For instance, there might be a term that rewards the agent for completing the task and one term that
|
||||
penalizes large actions (i.e. energy usage). Usually, you can pass weight parameters for those terms during
|
||||
initialization of the environment. However, *Reacher* does not allow you to do this! Nevertheless, all individual terms
|
||||
of the reward are returned in `info`, so let us build a wrapper for Reacher that allows us to weight those terms:
|
||||
|
||||
```python
|
||||
import gymnasium as gym
|
||||
|
||||
class ReacherRewardWrapper(gym.Wrapper):
|
||||
def __init__(self, env, reward_dist_weight, reward_ctrl_weight):
|
||||
super().__init__(env)
|
||||
self.reward_dist_weight = reward_dist_weight
|
||||
self.reward_ctrl_weight = reward_ctrl_weight
|
||||
|
||||
def step(self, action):
|
||||
obs, _, terminated, truncated, info = self.env.step(action)
|
||||
reward = (
|
||||
self.reward_dist_weight * info["reward_dist"]
|
||||
+ self.reward_ctrl_weight * info["reward_ctrl"]
|
||||
)
|
||||
return obs, reward, terminated, truncated, info
|
||||
```
|
||||
|
||||
```{note}
|
||||
It is *not* sufficient to use a `RewardWrapper` in this case!
|
||||
```
|
@@ -1,22 +1,16 @@
|
||||
# Action Wrappers
|
||||
|
||||
## Action Wrapper
|
||||
## Base Class
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.ActionWrapper
|
||||
|
||||
.. autofunction:: gymnasium.ActionWrapper.action
|
||||
.. automethod:: gymnasium.ActionWrapper.action
|
||||
```
|
||||
|
||||
## Clip Action
|
||||
|
||||
## Available Action Wrappers
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.ClipAction
|
||||
```
|
||||
|
||||
## Rescale Action
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.RescaleAction
|
||||
```
|
||||
|
||||
|
@@ -1,68 +1,15 @@
|
||||
# Misc Wrappers
|
||||
|
||||
## Atari Preprocessing
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.AtariPreprocessing
|
||||
```
|
||||
|
||||
## Autoreset
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.AutoResetWrapper
|
||||
```
|
||||
|
||||
## Compatibility
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.EnvCompatibility
|
||||
.. autoclass:: gymnasium.wrappers.StepAPICompatibility
|
||||
```
|
||||
|
||||
## Passive Environment Checker
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.PassiveEnvChecker
|
||||
```
|
||||
|
||||
## Human Rendering
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.HumanRendering
|
||||
```
|
||||
|
||||
## Order Enforcing
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.OrderEnforcing
|
||||
```
|
||||
|
||||
## Record Episode Statistics
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.RecordEpisodeStatistics
|
||||
```
|
||||
|
||||
## Record Video
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.RecordVideo
|
||||
```
|
||||
|
||||
## Render Collection
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.RenderCollection
|
||||
```
|
||||
|
||||
## Time Limit
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.TimeLimit
|
||||
```
|
||||
|
||||
## Vector List Info
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.VectorListInfo
|
||||
```
|
||||
|
@@ -1,62 +1,23 @@
|
||||
# Observation Wrappers
|
||||
|
||||
## Observation Wrapper
|
||||
## Base Class
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.ObservationWrapper
|
||||
.. autofunction:: gymnasium.ObservationWrapper.observation
|
||||
|
||||
.. automethod:: gymnasium.ObservationWrapper.observation
|
||||
```
|
||||
|
||||
## Transform Observation
|
||||
## Available Observation Wrappers
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.TransformObservation
|
||||
```
|
||||
|
||||
## Filter Observation
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.FilterObservation
|
||||
```
|
||||
|
||||
## Flatten Observation
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.FlattenObservation
|
||||
```
|
||||
|
||||
## Framestack Observations
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.FrameStack
|
||||
```
|
||||
|
||||
## Gray Scale Observation
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.GrayScaleObservation
|
||||
```
|
||||
|
||||
## Normalize Observation
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.NormalizeObservation
|
||||
```
|
||||
|
||||
## Pixel Observation Wrapper
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.PixelObservationWrapper
|
||||
```
|
||||
|
||||
## Resize Observation
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.ResizeObservation
|
||||
```
|
||||
|
||||
## Time Aware Observation
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.TimeAwareObservation
|
||||
```
|
||||
|
@@ -1,22 +1,17 @@
|
||||
|
||||
# Reward Wrappers
|
||||
|
||||
## Reward Wrapper
|
||||
## Base Class
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.RewardWrapper
|
||||
|
||||
.. autofunction:: gymnasium.RewardWrapper.reward
|
||||
.. automethod:: gymnasium.RewardWrapper.reward
|
||||
```
|
||||
|
||||
## Transform Reward
|
||||
## Available Reward Wrappers
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.TransformReward
|
||||
```
|
||||
|
||||
## Normalize Reward
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: gymnasium.wrappers.NormalizeReward
|
||||
```
|
||||
|
137
docs/tutorials/implementing_custom_wrappers.py
Normal file
137
docs/tutorials/implementing_custom_wrappers.py
Normal file
@@ -0,0 +1,137 @@
|
||||
"""
|
||||
Implementing Custom Wrappers
|
||||
============================
|
||||
|
||||
In this tutorial we will describe how to implement your own custom wrappers.
|
||||
Wrappers are a great way to add functionality to your environments in a modular way.
|
||||
This will save you a lot of boilerplate code.
|
||||
|
||||
We will show how to create a wrapper by
|
||||
|
||||
- Inheriting from :class:`gymnasium.ObservationWrapper`
|
||||
- Inheriting from :class:`gymnasium.ActionWrapper`
|
||||
- Inheriting from :class:`gymnasium.RewardWrapper`
|
||||
- Inheriting from :class:`gymnasium.Wrapper`
|
||||
|
||||
Before following this tutorial, make sure to check out the docs of the :mod:`gymnasium.wrappers` module.
|
||||
"""
|
||||
|
||||
# %%
|
||||
# Inheriting from :class:`gymnasium.ObservationWrapper`
|
||||
# -----------------------------------------------------
|
||||
# Observation wrappers are useful if you want to apply some function to the observations that are returned
|
||||
# by an environment. If you implement an observation wrapper, you only need to define this transformation
|
||||
# by implementing the :meth:`gymnasium.ObservationWrapper.observation` method. Moreover, you should remember to
|
||||
# update the observation space, if the transformation changes the shape of observations (e.g. by transforming
|
||||
# dictionaries into numpy arrays, as in the following example).
|
||||
#
|
||||
# Imagine you have a 2D navigation task where the environment returns dictionaries as observations with
|
||||
# keys ``"agent_position"`` and ``"target_position"``. A common thing to do might be to throw away some degrees of
|
||||
# freedom and only consider the position of the target relative to the agent, i.e.
|
||||
# ``observation["target_position"] - observation["agent_position"]``. For this, you could implement an
|
||||
# observation wrapper like this:
|
||||
|
||||
import numpy as np
|
||||
from gym import ActionWrapper, ObservationWrapper, RewardWrapper, Wrapper
|
||||
|
||||
import gymnasium as gym
|
||||
from gymnasium.spaces import Box, Discrete
|
||||
|
||||
|
||||
class RelativePosition(ObservationWrapper):
|
||||
def __init__(self, env):
|
||||
super().__init__(env)
|
||||
self.observation_space = Box(shape=(2,), low=-np.inf, high=np.inf)
|
||||
|
||||
def observation(self, obs):
|
||||
return obs["target"] - obs["agent"]
|
||||
|
||||
|
||||
# %%
|
||||
# Inheriting from :class:`gymnasium.ActionWrapper`
|
||||
# ------------------------------------------------
|
||||
# Action wrappers can be used to apply a transformation to actions before applying them to the environment.
|
||||
# If you implement an action wrapper, you need to define that transformation by implementing
|
||||
# :meth:`gymnasium.ActionWrapper.action`. Moreover, you should specify the domain of that transformation
|
||||
# by updating the action space of the wrapper.
|
||||
#
|
||||
# Let’s say you have an environment with action space of type :class:`gymnasium.spaces.Box`, but you would only like
|
||||
# to use a finite subset of actions. Then, you might want to implement the following wrapper:
|
||||
|
||||
|
||||
class DiscreteActions(ActionWrapper):
|
||||
def __init__(self, env, disc_to_cont):
|
||||
super().__init__(env)
|
||||
self.disc_to_cont = disc_to_cont
|
||||
self.action_space = Discrete(len(disc_to_cont))
|
||||
|
||||
def action(self, act):
|
||||
return self.disc_to_cont[act]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
env = gym.make("LunarLanderContinuous-v2")
|
||||
wrapped_env = DiscreteActions(
|
||||
env, [np.array([1, 0]), np.array([-1, 0]), np.array([0, 1]), np.array([0, -1])]
|
||||
)
|
||||
print(wrapped_env.action_space) # Discrete(4)
|
||||
|
||||
|
||||
# %%
|
||||
# Inheriting from :class:`gymnasium.RewardWrapper`
|
||||
# ------------------------------------------------
|
||||
# Reward wrappers are used to transform the reward that is returned by an environment.
|
||||
# As for the previous wrappers, you need to specify that transformation by implementing the
|
||||
# :meth:`gymnasium.RewardWrapper.reward` method. Also, you might want to update the reward range of the wrapper.
|
||||
#
|
||||
# Let us look at an example: Sometimes (especially when we do not have control over the reward
|
||||
# because it is intrinsic), we want to clip the reward to a range to gain some numerical stability.
|
||||
# To do that, we could, for instance, implement the following wrapper:
|
||||
|
||||
from typing import SupportsFloat
|
||||
|
||||
|
||||
class ClipReward(RewardWrapper):
|
||||
def __init__(self, env, min_reward, max_reward):
|
||||
super().__init__(env)
|
||||
self.min_reward = min_reward
|
||||
self.max_reward = max_reward
|
||||
self.reward_range = (min_reward, max_reward)
|
||||
|
||||
def reward(self, r: SupportsFloat) -> SupportsFloat:
|
||||
return np.clip(r, self.min_reward, self.max_reward)
|
||||
|
||||
|
||||
# %%
|
||||
# Inheriting from :class:`gymnasium.Wrapper`
|
||||
# ------------------------------------------
|
||||
# Sometimes you might need to implement a wrapper that does some more complicated modifications (e.g. modify the
|
||||
# reward based on data in ``info`` or change the rendering behavior).
|
||||
# Such wrappers can be implemented by inheriting from :class:`gymnasium.Wrapper`.
|
||||
#
|
||||
# - You can set a new action or observation space by defining ``self.action_space`` or ``self.observation_space`` in ``__init__``, respectively
|
||||
# - You can set new metadata and reward range by defining ``self.metadata`` and ``self.reward_range`` in ``__init__``, respectively
|
||||
# - You can override :meth:`gymnasium.Wrapper.step`, :meth:`gymnasium.Wrapper.render`, :meth:`gymnasium.Wrapper.close` etc.
|
||||
# If you do this, you can access the environment that was passed
|
||||
# to your wrapper (which *still* might be wrapped in some other wrapper) by accessing the attribute :attr:`env`.
|
||||
#
|
||||
# Let's also take a look at an example for this case. Most MuJoCo environments return a reward that consists
|
||||
# of different terms: For instance, there might be a term that rewards the agent for completing the task and one term that
|
||||
# penalizes large actions (i.e. energy usage). Usually, you can pass weight parameters for those terms during
|
||||
# initialization of the environment. However, *Reacher* does not allow you to do this! Nevertheless, all individual terms
|
||||
# of the reward are returned in `info`, so let us build a wrapper for Reacher that allows us to weight those terms:
|
||||
|
||||
|
||||
class ReacherRewardWrapper(Wrapper):
|
||||
def __init__(self, env, reward_dist_weight, reward_ctrl_weight):
|
||||
super().__init__(env)
|
||||
self.reward_dist_weight = reward_dist_weight
|
||||
self.reward_ctrl_weight = reward_ctrl_weight
|
||||
|
||||
def step(self, action):
|
||||
obs, _, terminated, truncated, info = self.env.step(action)
|
||||
reward = (
|
||||
self.reward_dist_weight * info["reward_dist"]
|
||||
+ self.reward_ctrl_weight * info["reward_ctrl"]
|
||||
)
|
||||
return obs, reward, terminated, truncated, info
|
@@ -236,58 +236,16 @@ WrapperActType = TypeVar("WrapperActType")
|
||||
class Wrapper(Env[WrapperObsType, WrapperActType]):
|
||||
"""Wraps a :class:`gymnasium.Env` to allow a modular transformation of the :meth:`step` and :meth:`reset` methods.
|
||||
|
||||
This class is the base class of all wrappers to change the behavior of the underlying environment allowing
|
||||
modification to the :attr:`action_space`, :attr:`observation_space`, :attr:`reward_range` and :attr:`metadata`
|
||||
that doesn't change the underlying environment attributes.
|
||||
This class is the base class of all wrappers to change the behavior of the underlying environment.
|
||||
Wrappers that inherit from this class can modify the :attr:`action_space`, :attr:`observation_space`,
|
||||
:attr:`reward_range` and :attr:`metadata` attributes, without changing the underlying environment's attributes.
|
||||
Moreover, the behavior of the :meth:`step` and :meth:`reset` methods can be changed by these wrappers.
|
||||
|
||||
In addition, for several attributes (:attr:`spec`, :attr:`render_mode`, :attr:`np_random`) will point back to the
|
||||
wrapper's environment.
|
||||
|
||||
Wrappers are a convenient way to modify an existing environment without having to alter the underlying code directly.
|
||||
Using wrappers will allow you to avoid a lot of boilerplate code and make your environment more modular. Wrappers can
|
||||
also be chained to combine their effects. Most environments that are generated via `gymnasium.make` will already be wrapped by default.
|
||||
|
||||
In order to wrap an environment, you must first initialize a base environment. Then you can pass this environment along
|
||||
with (possibly optional) parameters to the wrapper's constructor.
|
||||
|
||||
>>> import gymnasium as gym
|
||||
>>> from gymnasium.wrappers import RescaleAction
|
||||
>>> base_env = gym.make("BipedalWalker-v3")
|
||||
>>> base_env.action_space
|
||||
Box([-1. -1. -1. -1.], [1. 1. 1. 1.], (4,), float32)
|
||||
>>> wrapped_env = RescaleAction(base_env, min_action=0, max_action=1)
|
||||
>>> wrapped_env.action_space
|
||||
Box([0. 0. 0. 0.], [1. 1. 1. 1.], (4,), float32)
|
||||
|
||||
You can access the environment underneath the **first** wrapper by using the :attr:`env` attribute.
|
||||
As the :class:`Wrapper` class inherits from :class:`Env` then :attr:`env` can be another wrapper.
|
||||
|
||||
>>> wrapped_env
|
||||
<RescaleAction<TimeLimit<OrderEnforcing<BipedalWalker<BipedalWalker-v3>>>>>
|
||||
>>> wrapped_env.env
|
||||
<TimeLimit<OrderEnforcing<BipedalWalker<BipedalWalker-v3>>>>
|
||||
|
||||
If you want to get to the environment underneath **all** of the layers of wrappers, you can use the `.unwrapped` attribute.
|
||||
If the environment is already a bare environment, the `.unwrapped` attribute will just return itself.
|
||||
|
||||
>>> wrapped_env
|
||||
<RescaleAction<TimeLimit<OrderEnforcing<BipedalWalker<BipedalWalker-v3>>>>>
|
||||
>>> wrapped_env.unwrapped
|
||||
<gymnasium.envs.box2d.bipedal_walker.BipedalWalker object at 0x7f87d70712d0>
|
||||
|
||||
There are three common things you might want a wrapper to do:
|
||||
|
||||
- Transform actions before applying them to the base environment
|
||||
- Transform observations that are returned by the base environment
|
||||
- Transform rewards that are returned by the base environment
|
||||
|
||||
Such wrappers can be easily implemented by inheriting from `ActionWrapper`, `ObservationWrapper`, or `RewardWrapper` and implementing the
|
||||
respective transformation. If you need a wrapper to do more complicated tasks, you can inherit from the `Wrapper` class directly.
|
||||
The code that is presented in the following sections can also be found in
|
||||
the [gym-examples](https://github.com/Farama-Foundation/gym-examples) repository
|
||||
Some attributes (:attr:`spec`, :attr:`render_mode`, :attr:`np_random`) will point back to the wrapper's environment
|
||||
(i.e. to the corresponding attributes of :attr:`env`).
|
||||
|
||||
Note:
|
||||
Don't forget to call ``super().__init__(env)``
|
||||
If you inherit from :class:`Wrapper`, don't forget to call ``super().__init__(env)``
|
||||
"""
|
||||
|
||||
def __init__(self, env: Env[ObsType, ActType]):
|
||||
@@ -425,7 +383,10 @@ class Wrapper(Env[WrapperObsType, WrapperActType]):
|
||||
|
||||
@property
|
||||
def unwrapped(self) -> Env[ObsType, ActType]:
|
||||
"""Returns the base environment of the wrapper."""
|
||||
"""Returns the base environment of the wrapper.
|
||||
|
||||
This will be the bare :class:`gymnasium.Env` environment, underneath all layers of wrappers.
|
||||
"""
|
||||
return self.env.unwrapped
|
||||
|
||||
|
||||
@@ -438,20 +399,6 @@ class ObservationWrapper(Wrapper[WrapperObsType, ActType]):
|
||||
reflected by the :attr:`env` observation space. Otherwise, you need to specify the new observation space of the
|
||||
wrapper by setting :attr:`self.observation_space` in the :meth:`__init__` method of your wrapper.
|
||||
|
||||
For example, you might have a 2D navigation task where the environment returns dictionaries as observations with
|
||||
keys ``"agent_position"`` and ``"target_position"``. A common thing to do might be to throw away some degrees of
|
||||
freedom and only consider the position of the target relative to the agent, i.e.
|
||||
``observation["target_position"] - observation["agent_position"]``. For this, you could implement an
|
||||
observation wrapper like this::
|
||||
|
||||
class RelativePosition(gym.ObservationWrapper):
|
||||
def __init__(self, env):
|
||||
super().__init__(env)
|
||||
self.observation_space = Box(shape=(2,), low=-np.inf, high=np.inf)
|
||||
|
||||
def observation(self, obs):
|
||||
return obs["target"] - obs["agent"]
|
||||
|
||||
Among others, Gymnasium provides the observation wrapper :class:`TimeAwareObservation`, which adds information about the
|
||||
index of the timestep to the observation.
|
||||
"""
|
||||
@@ -494,20 +441,6 @@ class RewardWrapper(Wrapper[ObsType, ActType]):
|
||||
:meth:`reward` to implement that transformation.
|
||||
This transformation might change the :attr:`reward_range`; to specify the :attr:`reward_range` of your wrapper,
|
||||
you can simply define :attr:`self.reward_range` in :meth:`__init__`.
|
||||
|
||||
Let us look at an example: Sometimes (especially when we do not have control over the reward
|
||||
because it is intrinsic), we want to clip the reward to a range to gain some numerical stability.
|
||||
To do that, we could, for instance, implement the following wrapper::
|
||||
|
||||
class ClipReward(gym.RewardWrapper):
|
||||
def __init__(self, env, min_reward, max_reward):
|
||||
super().__init__(env)
|
||||
self.min_reward = min_reward
|
||||
self.max_reward = max_reward
|
||||
self.reward_range = (min_reward, max_reward)
|
||||
|
||||
def reward(self, r: SupportsFloat) -> SupportsFloat:
|
||||
return np.clip(r, self.min_reward, self.max_reward)
|
||||
"""
|
||||
|
||||
def __init__(self, env: Env[ObsType, ActType]):
|
||||
@@ -543,24 +476,6 @@ class ActionWrapper(Wrapper[ObsType, WrapperActType]):
|
||||
In that case, you need to specify the new action space of the wrapper by setting :attr:`self.action_space` in
|
||||
the :meth:`__init__` method of your wrapper.
|
||||
|
||||
Let’s say you have an environment with action space of type :class:`gymnasium.spaces.Box`, but you would only like
|
||||
to use a finite subset of actions. Then, you might want to implement the following wrapper::
|
||||
|
||||
class DiscreteActions(gym.ActionWrapper):
|
||||
def __init__(self, env, disc_to_cont):
|
||||
super().__init__(env)
|
||||
self.disc_to_cont = disc_to_cont
|
||||
self.action_space = Discrete(len(disc_to_cont))
|
||||
|
||||
def action(self, act):
|
||||
return self.disc_to_cont[act]
|
||||
|
||||
if __name__ == "__main__":
|
||||
env = gym.make("LunarLanderContinuous-v2")
|
||||
wrapped_env = DiscreteActions(env, [np.array([1,0]), np.array([-1,0]),
|
||||
np.array([0,1]), np.array([0,-1])])
|
||||
print(wrapped_env.action_space) #Discrete(4)
|
||||
|
||||
Among others, Gymnasium provides the action wrappers :class:`ClipAction` and :class:`RescaleAction` for clipping and rescaling actions.
|
||||
"""
|
||||
|
||||
|
@@ -1,4 +1,51 @@
|
||||
"""Module of wrapper classes."""
|
||||
"""Module of wrapper classes.
|
||||
|
||||
Wrappers are a convenient way to modify an existing environment without having to alter the underlying code directly.
|
||||
Using wrappers will allow you to avoid a lot of boilerplate code and make your environment more modular. Wrappers can
|
||||
also be chained to combine their effects.
|
||||
Most environments that are generated via :meth:`gymnasium.make` will already be wrapped by default.
|
||||
|
||||
In order to wrap an environment, you must first initialize a base environment. Then you can pass this environment along
|
||||
with (possibly optional) parameters to the wrapper's constructor.
|
||||
|
||||
>>> import gymnasium as gym
|
||||
>>> from gymnasium.wrappers import RescaleAction
|
||||
>>> base_env = gym.make("BipedalWalker-v3")
|
||||
>>> base_env.action_space
|
||||
Box([-1. -1. -1. -1.], [1. 1. 1. 1.], (4,), float32)
|
||||
>>> wrapped_env = RescaleAction(base_env, min_action=0, max_action=1)
|
||||
>>> wrapped_env.action_space
|
||||
Box([0. 0. 0. 0.], [1. 1. 1. 1.], (4,), float32)
|
||||
|
||||
You can access the environment underneath the **first** wrapper by using the :attr:`gymnasium.Wrapper.env` attribute.
|
||||
As the :class:`gymnasium.Wrapper` class inherits from :class:`gymnasium.Env` then :attr:`gymnasium.Wrapper.env` can be another wrapper.
|
||||
|
||||
>>> wrapped_env
|
||||
<RescaleAction<TimeLimit<OrderEnforcing<BipedalWalker<BipedalWalker-v3>>>>>
|
||||
>>> wrapped_env.env
|
||||
<TimeLimit<OrderEnforcing<BipedalWalker<BipedalWalker-v3>>>>
|
||||
|
||||
If you want to get to the environment underneath **all** of the layers of wrappers, you can use the
|
||||
:attr:`gymnasium.Wrapper.unwrapped` attribute.
|
||||
If the environment is already a bare environment, the :attr:`gymnasium.Wrapper.unwrapped` attribute will just return itself.
|
||||
|
||||
>>> wrapped_env
|
||||
<RescaleAction<TimeLimit<OrderEnforcing<BipedalWalker<BipedalWalker-v3>>>>>
|
||||
>>> wrapped_env.unwrapped
|
||||
<gymnasium.envs.box2d.bipedal_walker.BipedalWalker object at 0x7f87d70712d0>
|
||||
|
||||
There are three common things you might want a wrapper to do:
|
||||
|
||||
- Transform actions before applying them to the base environment
|
||||
- Transform observations that are returned by the base environment
|
||||
- Transform rewards that are returned by the base environment
|
||||
|
||||
Such wrappers can be easily implemented by inheriting from :class:`gymnasium.ActionWrapper`,
|
||||
:class:`gymnasium.ObservationWrapper`, or :class:`gymnasium.RewardWrapper` and implementing the respective transformation.
|
||||
If you need a wrapper to do more complicated tasks, you can inherit from the :class:`gymnasium.Wrapper` class directly.
|
||||
|
||||
If you'd like to implement your own custom wrapper, check out `the corresponding tutorial <../../tutorials/implementing_custom_wrappers>`_.
|
||||
"""
|
||||
from gymnasium.wrappers.atari_preprocessing import AtariPreprocessing
|
||||
from gymnasium.wrappers.autoreset import AutoResetWrapper
|
||||
from gymnasium.wrappers.clip_action import ClipAction
|
||||
|
Reference in New Issue
Block a user