mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-28 17:27:08 +00:00
Copy vector
to experimental.vector
(#317)
This commit is contained in:
@@ -51,7 +51,7 @@ repos:
|
||||
rev: 6.1.1
|
||||
hooks:
|
||||
- id: pydocstyle
|
||||
exclude: ^(gymnasium/envs/box2d)|(gymnasium/envs/classic_control)|(gymnasium/envs/mujoco)|(gymnasium/envs/toy_text)|(tests/experimental/vector)|(tests/envs)|(tests/spaces)|(tests/utils)|(tests/vector)|(tests/wrappers)|(docs/)
|
||||
exclude: ^(gymnasium/envs/box2d)|(gymnasium/envs/classic_control)|(gymnasium/envs/mujoco)|(gymnasium/envs/toy_text)|(tests/envs)|(tests/spaces)|(tests/utils)|(tests/vector)|(tests/wrappers)|(docs/)
|
||||
args:
|
||||
- --source
|
||||
- --explain
|
||||
|
@@ -1,13 +1,23 @@
|
||||
"""Experimental vector env API."""
|
||||
from gymnasium.experimental.vector import utils
|
||||
from gymnasium.experimental.vector.async_vector_env import AsyncVectorEnv
|
||||
from gymnasium.experimental.vector.sync_vector_env import SyncVectorEnv
|
||||
from gymnasium.experimental.vector.vector_env import VectorEnv, VectorWrapper
|
||||
from gymnasium.experimental.vector.vector_env import (
|
||||
VectorActionWrapper,
|
||||
VectorEnv,
|
||||
VectorObservationWrapper,
|
||||
VectorRewardWrapper,
|
||||
VectorWrapper,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
# Vector
|
||||
"VectorEnv",
|
||||
"VectorWrapper",
|
||||
"VectorObservationWrapper",
|
||||
"VectorActionWrapper",
|
||||
"VectorRewardWrapper",
|
||||
"SyncVectorEnv",
|
||||
"AsyncVectorEnv",
|
||||
"utils",
|
||||
]
|
||||
|
@@ -1,25 +1,26 @@
|
||||
"""An async vector environment."""
|
||||
from __future__ import annotations
|
||||
|
||||
import multiprocessing as mp
|
||||
import sys
|
||||
import time
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from multiprocessing import Queue
|
||||
from multiprocessing.connection import Connection
|
||||
from multiprocessing.queues import Queue
|
||||
from typing import Any, List, Optional, Sequence, Tuple, Union
|
||||
from typing import Any, Callable, Sequence
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gymnasium import logger
|
||||
from gymnasium.core import ObsType
|
||||
from gymnasium.core import Env, ObsType
|
||||
from gymnasium.error import (
|
||||
AlreadyPendingCallError,
|
||||
ClosedEnvironmentError,
|
||||
CustomSpaceError,
|
||||
NoAsyncCallError,
|
||||
)
|
||||
from gymnasium.experimental.vector.vector_env import VectorEnv
|
||||
from gymnasium.vector.utils import (
|
||||
from gymnasium.experimental.vector.utils import (
|
||||
CloudpickleWrapper,
|
||||
batch_space,
|
||||
clear_mpi_env_vars,
|
||||
@@ -30,6 +31,7 @@ from gymnasium.vector.utils import (
|
||||
read_from_shared_memory,
|
||||
write_to_shared_memory,
|
||||
)
|
||||
from gymnasium.experimental.vector.vector_env import VectorEnv
|
||||
|
||||
|
||||
__all__ = ["AsyncVectorEnv"]
|
||||
@@ -47,26 +49,25 @@ class AsyncVectorEnv(VectorEnv):
|
||||
|
||||
It uses ``multiprocessing`` processes, and pipes for communication.
|
||||
|
||||
Example::
|
||||
|
||||
Example:
|
||||
>>> import gymnasium as gym
|
||||
>>> env = gym.vector.AsyncVectorEnv([
|
||||
... lambda: gym.make("Pendulum-v1", g=9.81),
|
||||
... lambda: gym.make("Pendulum-v1", g=1.62)
|
||||
... ])
|
||||
>>> env.reset() # doctest: +SKIP
|
||||
array([[-0.8286432 , 0.5597771 , 0.90249056],
|
||||
[-0.85009176, 0.5266346 , 0.60007906]], dtype=float32)
|
||||
>>> env.reset(seed=42)
|
||||
(array([[-0.14995256, 0.9886932 , -0.12224312],
|
||||
[ 0.5760367 , 0.8174238 , -0.91244936]], dtype=float32), {})
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
env_fns: Sequence[callable],
|
||||
env_fns: Sequence[Callable[[], Env]],
|
||||
shared_memory: bool = True,
|
||||
copy: bool = True,
|
||||
context: Optional[str] = None,
|
||||
context: str | None = None,
|
||||
daemon: bool = True,
|
||||
worker: Optional[callable] = None,
|
||||
worker: callable | None = None,
|
||||
):
|
||||
"""Vectorized environment that runs multiple environments in parallel.
|
||||
|
||||
@@ -124,7 +125,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
self.observations = read_from_shared_memory(
|
||||
self.single_observation_space, _obs_buffer, n=self.num_envs
|
||||
)
|
||||
except CustomSpaceError:
|
||||
except CustomSpaceError as e:
|
||||
raise ValueError(
|
||||
"Using `shared_memory=True` in `AsyncVectorEnv` "
|
||||
"is incompatible with non-standard Gymnasium observation spaces "
|
||||
@@ -132,7 +133,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
"only compatible with default Gymnasium spaces (e.g. `Box`, "
|
||||
"`Tuple`, `Dict`) for batching. Set `shared_memory=False` "
|
||||
"if you use custom observation spaces."
|
||||
)
|
||||
) from e
|
||||
else:
|
||||
_obs_buffer = None
|
||||
self.observations = create_empty_array(
|
||||
@@ -170,8 +171,8 @@ class AsyncVectorEnv(VectorEnv):
|
||||
|
||||
def reset_async(
|
||||
self,
|
||||
seed: Optional[Union[int, List[int]]] = None,
|
||||
options: Optional[dict] = None,
|
||||
seed: int | list[int] | None = None,
|
||||
options: dict | None = None,
|
||||
):
|
||||
"""Send calls to the :obj:`reset` methods of the sub-environments.
|
||||
|
||||
@@ -213,8 +214,8 @@ class AsyncVectorEnv(VectorEnv):
|
||||
|
||||
def reset_wait(
|
||||
self,
|
||||
timeout: Optional[Union[int, float]] = None,
|
||||
) -> Union[ObsType, Tuple[ObsType, List[dict]]]:
|
||||
timeout: int | float | None = None,
|
||||
) -> tuple[ObsType, list[dict]]:
|
||||
"""Waits for the calls triggered by :meth:`reset_async` to finish and returns the results.
|
||||
|
||||
Args:
|
||||
@@ -260,8 +261,8 @@ class AsyncVectorEnv(VectorEnv):
|
||||
def reset(
|
||||
self,
|
||||
*,
|
||||
seed: Optional[Union[int, List[int]]] = None,
|
||||
options: Optional[dict] = None,
|
||||
seed: int | list[int] | None = None,
|
||||
options: dict | None = None,
|
||||
):
|
||||
"""Reset all parallel environments and return a batch of initial observations and info.
|
||||
|
||||
@@ -301,8 +302,8 @@ class AsyncVectorEnv(VectorEnv):
|
||||
self._state = AsyncState.WAITING_STEP
|
||||
|
||||
def step_wait(
|
||||
self, timeout: Optional[Union[int, float]] = None
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, dict]:
|
||||
self, timeout: int | float | None = None
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, dict]:
|
||||
"""Wait for the calls to :obj:`step` in each sub-environment to finish.
|
||||
|
||||
Args:
|
||||
@@ -336,6 +337,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
obs, rew, terminated, truncated, info = result
|
||||
|
||||
successes.append(success)
|
||||
if success:
|
||||
observations_list.append(obs)
|
||||
rewards.append(rew)
|
||||
terminateds.append(terminated)
|
||||
@@ -396,7 +398,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
pipe.send(("_call", (name, args, kwargs)))
|
||||
self._state = AsyncState.WAITING_CALL
|
||||
|
||||
def call_wait(self, timeout: Optional[Union[int, float]] = None) -> list:
|
||||
def call_wait(self, timeout: int | float | None = None) -> list:
|
||||
"""Calls all parent pipes and waits for the results.
|
||||
|
||||
Args:
|
||||
@@ -429,7 +431,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
|
||||
return results
|
||||
|
||||
def call(self, name: str, *args, **kwargs) -> List[Any]:
|
||||
def call(self, name: str, *args, **kwargs) -> list[Any]:
|
||||
"""Call a method, or get a property, from each parallel environment.
|
||||
|
||||
Args:
|
||||
@@ -454,7 +456,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
"""
|
||||
return self.call(name)
|
||||
|
||||
def set_attr(self, name: str, values: Union[list, tuple, object]):
|
||||
def set_attr(self, name: str, values: list[Any] | tuple[Any] | object):
|
||||
"""Sets an attribute of the sub-environments.
|
||||
|
||||
Args:
|
||||
@@ -489,9 +491,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
||||
self._raise_if_errors(successes)
|
||||
|
||||
def close_extras(
|
||||
self, timeout: Optional[Union[int, float]] = None, terminate: bool = False
|
||||
):
|
||||
def close_extras(self, timeout: int | float | None = None, terminate: bool = False):
|
||||
"""Close the environments & clean up the extra resources (processes and pipes).
|
||||
|
||||
Args:
|
||||
@@ -556,15 +556,13 @@ class AsyncVectorEnv(VectorEnv):
|
||||
same_observation_spaces, same_action_spaces = zip(*results)
|
||||
if not all(same_observation_spaces):
|
||||
raise RuntimeError(
|
||||
"Some environments have an observation space different from "
|
||||
f"`{self.single_observation_space}`. In order to batch observations, "
|
||||
"the observation spaces from all environments must be equal."
|
||||
f"Some environments have an observation space different from `{self.single_observation_space}`. "
|
||||
"In order to batch observations, the observation spaces from all environments must be equal."
|
||||
)
|
||||
if not all(same_action_spaces):
|
||||
raise RuntimeError(
|
||||
"Some environments have an action space different from "
|
||||
f"`{self.single_action_space}`. In order to batch actions, the "
|
||||
"action spaces from all environments must be equal."
|
||||
f"Some environments have an action space different from `{self.single_action_space}`. "
|
||||
"In order to batch actions, the action spaces from all environments must be equal."
|
||||
)
|
||||
|
||||
def _assert_is_running(self):
|
||||
@@ -573,7 +571,7 @@ class AsyncVectorEnv(VectorEnv):
|
||||
f"Trying to operate on `{type(self).__name__}`, after a call to `close()`."
|
||||
)
|
||||
|
||||
def _raise_if_errors(self, successes):
|
||||
def _raise_if_errors(self, successes: list[bool]):
|
||||
if all(successes):
|
||||
return
|
||||
|
||||
|
@@ -1,13 +1,19 @@
|
||||
"""A synchronous vector environment."""
|
||||
from __future__ import annotations
|
||||
|
||||
from copy import deepcopy
|
||||
from typing import Any, Callable, Iterator, List, Optional, Union
|
||||
from typing import Any, Callable, Iterator
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gymnasium import Env
|
||||
from gymnasium.experimental.vector.utils import (
|
||||
batch_space,
|
||||
concatenate,
|
||||
create_empty_array,
|
||||
iterate,
|
||||
)
|
||||
from gymnasium.experimental.vector.vector_env import VectorEnv
|
||||
from gymnasium.vector.utils import concatenate, create_empty_array, iterate
|
||||
from gymnasium.vector.utils.spaces import batch_space
|
||||
|
||||
|
||||
__all__ = ["SyncVectorEnv"]
|
||||
@@ -16,16 +22,15 @@ __all__ = ["SyncVectorEnv"]
|
||||
class SyncVectorEnv(VectorEnv):
|
||||
"""Vectorized environment that serially runs multiple environments.
|
||||
|
||||
Example::
|
||||
|
||||
Example:
|
||||
>>> import gymnasium as gym
|
||||
>>> env = gym.vector.SyncVectorEnv([
|
||||
... lambda: gym.make("Pendulum-v1", g=9.81),
|
||||
... lambda: gym.make("Pendulum-v1", g=1.62)
|
||||
... ])
|
||||
>>> env.reset() # doctest: +SKIP
|
||||
array([[-0.8286432 , 0.5597771 , 0.90249056],
|
||||
[-0.85009176, 0.5266346 , 0.60007906]], dtype=float32)
|
||||
>>> env.reset(seed=42)
|
||||
(array([[-0.14995256, 0.9886932 , -0.12224312],
|
||||
[ 0.5760367 , 0.8174238 , -0.91244936]], dtype=float32), {})
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -70,8 +75,8 @@ class SyncVectorEnv(VectorEnv):
|
||||
|
||||
def reset(
|
||||
self,
|
||||
seed: Optional[Union[int, List[int]]] = None,
|
||||
options: Optional[dict] = None,
|
||||
seed: int | list[int] | None = None,
|
||||
options: dict | None = None,
|
||||
):
|
||||
"""Waits for the calls triggered by :meth:`reset_async` to finish and returns the results.
|
||||
|
||||
@@ -179,7 +184,7 @@ class SyncVectorEnv(VectorEnv):
|
||||
"""
|
||||
return self.call(name)
|
||||
|
||||
def set_attr(self, name: str, values: Union[list, tuple, Any]):
|
||||
def set_attr(self, name: str, values: list | tuple | Any):
|
||||
"""Sets an attribute of the sub-environments.
|
||||
|
||||
Args:
|
||||
|
30
gymnasium/experimental/vector/utils/__init__.py
Normal file
30
gymnasium/experimental/vector/utils/__init__.py
Normal file
@@ -0,0 +1,30 @@
|
||||
"""Module for gymnasium experimental vector utility functions."""
|
||||
|
||||
from gymnasium.experimental.vector.utils.misc import (
|
||||
CloudpickleWrapper,
|
||||
clear_mpi_env_vars,
|
||||
)
|
||||
from gymnasium.experimental.vector.utils.shared_memory import (
|
||||
create_shared_memory,
|
||||
read_from_shared_memory,
|
||||
write_to_shared_memory,
|
||||
)
|
||||
from gymnasium.experimental.vector.utils.space_utils import (
|
||||
batch_space,
|
||||
concatenate,
|
||||
create_empty_array,
|
||||
iterate,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"batch_space",
|
||||
"iterate",
|
||||
"concatenate",
|
||||
"create_empty_array",
|
||||
"read_from_shared_memory",
|
||||
"create_shared_memory",
|
||||
"write_to_shared_memory",
|
||||
"CloudpickleWrapper",
|
||||
"clear_mpi_env_vars",
|
||||
]
|
61
gymnasium/experimental/vector/utils/misc.py
Normal file
61
gymnasium/experimental/vector/utils/misc.py
Normal file
@@ -0,0 +1,61 @@
|
||||
"""Miscellaneous utilities."""
|
||||
from __future__ import annotations
|
||||
|
||||
import contextlib
|
||||
import os
|
||||
from collections.abc import Callable
|
||||
|
||||
from gymnasium.core import Env
|
||||
|
||||
|
||||
__all__ = ["CloudpickleWrapper", "clear_mpi_env_vars"]
|
||||
|
||||
|
||||
class CloudpickleWrapper:
|
||||
"""Wrapper that uses cloudpickle to pickle and unpickle the result."""
|
||||
|
||||
def __init__(self, fn: Callable[[], Env]):
|
||||
"""Cloudpickle wrapper for a function."""
|
||||
self.fn = fn
|
||||
|
||||
def __getstate__(self):
|
||||
"""Get the state using `cloudpickle.dumps(self.fn)`."""
|
||||
import cloudpickle
|
||||
|
||||
return cloudpickle.dumps(self.fn)
|
||||
|
||||
def __setstate__(self, ob):
|
||||
"""Sets the state with obs."""
|
||||
import pickle
|
||||
|
||||
self.fn = pickle.loads(ob)
|
||||
|
||||
def __call__(self):
|
||||
"""Calls the function `self.fn` with no arguments."""
|
||||
return self.fn()
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def clear_mpi_env_vars():
|
||||
"""Clears the MPI of environment variables.
|
||||
|
||||
`from mpi4py import MPI` will call `MPI_Init` by default.
|
||||
If the child process has MPI environment variables, MPI will think that the child process
|
||||
is an MPI process just like the parent and do bad things such as hang.
|
||||
|
||||
This context manager is a hacky way to clear those environment variables
|
||||
temporarily such as when we are starting multiprocessing Processes.
|
||||
|
||||
Yields:
|
||||
Yields for the context manager
|
||||
"""
|
||||
removed_environment = {}
|
||||
for k, v in list(os.environ.items()):
|
||||
for prefix in ["OMPI_", "PMI_"]:
|
||||
if k.startswith(prefix):
|
||||
removed_environment[k] = v
|
||||
del os.environ[k]
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
os.environ.update(removed_environment)
|
181
gymnasium/experimental/vector/utils/shared_memory.py
Normal file
181
gymnasium/experimental/vector/utils/shared_memory.py
Normal file
@@ -0,0 +1,181 @@
|
||||
"""Utility functions for vector environments to share memory between processes."""
|
||||
from __future__ import annotations
|
||||
|
||||
import multiprocessing as mp
|
||||
from collections import OrderedDict
|
||||
from ctypes import c_bool
|
||||
from functools import singledispatch
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gymnasium.error import CustomSpaceError
|
||||
from gymnasium.spaces import (
|
||||
Box,
|
||||
Dict,
|
||||
Discrete,
|
||||
MultiBinary,
|
||||
MultiDiscrete,
|
||||
Space,
|
||||
Tuple,
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["create_shared_memory", "read_from_shared_memory", "write_to_shared_memory"]
|
||||
|
||||
|
||||
@singledispatch
|
||||
def create_shared_memory(space: Space, n: int = 1, ctx=mp) -> dict | tuple | mp.Array:
|
||||
"""Create a shared memory object, to be shared across processes.
|
||||
|
||||
This eventually contains the observations from the vectorized environment.
|
||||
|
||||
Args:
|
||||
space: Observation space of a single environment in the vectorized environment.
|
||||
n: Number of environments in the vectorized environment (i.e. the number of processes).
|
||||
ctx: The multiprocess module
|
||||
|
||||
Returns:
|
||||
shared_memory for the shared object across processes.
|
||||
|
||||
Raises:
|
||||
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
|
||||
"""
|
||||
raise CustomSpaceError(
|
||||
f"Cannot create a shared memory for space with type `{type(space)}`. "
|
||||
"`create_shared_memory` only supports by default built-in Gymnasium spaces, register function for custom space."
|
||||
)
|
||||
|
||||
|
||||
@create_shared_memory.register(Box)
|
||||
@create_shared_memory.register(Discrete)
|
||||
@create_shared_memory.register(MultiDiscrete)
|
||||
@create_shared_memory.register(MultiBinary)
|
||||
def _create_base_shared_memory(space, n: int = 1, ctx=mp):
|
||||
dtype = space.dtype.char
|
||||
if dtype in "?":
|
||||
dtype = c_bool
|
||||
return ctx.Array(dtype, n * int(np.prod(space.shape)))
|
||||
|
||||
|
||||
@create_shared_memory.register(Tuple)
|
||||
def _create_tuple_shared_memory(space, n: int = 1, ctx=mp):
|
||||
return tuple(
|
||||
create_shared_memory(subspace, n=n, ctx=ctx) for subspace in space.spaces
|
||||
)
|
||||
|
||||
|
||||
@create_shared_memory.register(Dict)
|
||||
def _create_dict_shared_memory(space, n=1, ctx=mp):
|
||||
return OrderedDict(
|
||||
[
|
||||
(key, create_shared_memory(subspace, n=n, ctx=ctx))
|
||||
for (key, subspace) in space.spaces.items()
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@singledispatch
|
||||
def read_from_shared_memory(
|
||||
space: Space, shared_memory: dict | tuple | mp.Array, n: int = 1
|
||||
) -> dict | tuple | np.ndarray:
|
||||
"""Read the batch of observations from shared memory as a numpy array.
|
||||
|
||||
..notes::
|
||||
The numpy array objects returned by `read_from_shared_memory` shares the
|
||||
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
|
||||
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
|
||||
|
||||
Args:
|
||||
space: Observation space of a single environment in the vectorized environment.
|
||||
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
|
||||
This object is created with `create_shared_memory`.
|
||||
n: Number of environments in the vectorized environment (i.e. the number of processes).
|
||||
|
||||
Returns:
|
||||
Batch of observations as a (possibly nested) numpy array.
|
||||
|
||||
Raises:
|
||||
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
|
||||
"""
|
||||
raise CustomSpaceError(
|
||||
f"Cannot read from a shared memory for space with type `{type(space)}`. "
|
||||
"`read_from_shared_memory` only supports by default built-in Gymnasium spaces, register function for custom space."
|
||||
)
|
||||
|
||||
|
||||
@read_from_shared_memory.register(Box)
|
||||
@read_from_shared_memory.register(Discrete)
|
||||
@read_from_shared_memory.register(MultiDiscrete)
|
||||
@read_from_shared_memory.register(MultiBinary)
|
||||
def _read_base_from_shared_memory(space, shared_memory, n: int = 1):
|
||||
return np.frombuffer(shared_memory.get_obj(), dtype=space.dtype).reshape(
|
||||
(n,) + space.shape
|
||||
)
|
||||
|
||||
|
||||
@read_from_shared_memory.register(Tuple)
|
||||
def _read_tuple_from_shared_memory(space, shared_memory, n: int = 1):
|
||||
return tuple(
|
||||
read_from_shared_memory(subspace, memory, n=n)
|
||||
for (memory, subspace) in zip(shared_memory, space.spaces)
|
||||
)
|
||||
|
||||
|
||||
@read_from_shared_memory.register(Dict)
|
||||
def _read_dict_from_shared_memory(space, shared_memory, n: int = 1):
|
||||
return OrderedDict(
|
||||
[
|
||||
(key, read_from_shared_memory(subspace, shared_memory[key], n=n))
|
||||
for (key, subspace) in space.spaces.items()
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@singledispatch
|
||||
def write_to_shared_memory(
|
||||
space: Space,
|
||||
index: int,
|
||||
value: np.ndarray,
|
||||
shared_memory: dict | tuple | mp.Array,
|
||||
):
|
||||
"""Write the observation of a single environment into shared memory.
|
||||
|
||||
Args:
|
||||
space: Observation space of a single environment in the vectorized environment.
|
||||
index: Index of the environment (must be in `[0, num_envs)`).
|
||||
value: Observation of the single environment to write to shared memory.
|
||||
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
|
||||
This object is created with `create_shared_memory`.
|
||||
|
||||
Raises:
|
||||
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
|
||||
"""
|
||||
raise CustomSpaceError(
|
||||
f"Cannot write to a shared memory for space with type `{type(space)}`. "
|
||||
"`write_to_shared_memory` only supports by default built-in Gymnasium spaces, register function for custom space."
|
||||
)
|
||||
|
||||
|
||||
@write_to_shared_memory.register(Box)
|
||||
@write_to_shared_memory.register(Discrete)
|
||||
@write_to_shared_memory.register(MultiDiscrete)
|
||||
@write_to_shared_memory.register(MultiBinary)
|
||||
def _write_base_to_shared_memory(space, index, value, shared_memory):
|
||||
size = int(np.prod(space.shape))
|
||||
destination = np.frombuffer(shared_memory.get_obj(), dtype=space.dtype)
|
||||
np.copyto(
|
||||
destination[index * size : (index + 1) * size],
|
||||
np.asarray(value, dtype=space.dtype).flatten(),
|
||||
)
|
||||
|
||||
|
||||
@write_to_shared_memory.register(Tuple)
|
||||
def _write_tuple_to_shared_memory(space, index, values, shared_memory):
|
||||
for value, memory, subspace in zip(values, shared_memory, space.spaces):
|
||||
write_to_shared_memory(subspace, index, value, memory)
|
||||
|
||||
|
||||
@write_to_shared_memory.register(Dict)
|
||||
def _write_dict_to_shared_memory(space, index, values, shared_memory):
|
||||
for key, subspace in space.spaces.items():
|
||||
write_to_shared_memory(subspace, index, values[key], shared_memory[key])
|
347
gymnasium/experimental/vector/utils/space_utils.py
Normal file
347
gymnasium/experimental/vector/utils/space_utils.py
Normal file
@@ -0,0 +1,347 @@
|
||||
"""Utility functions for gymnasium spaces: `batch_space` and `iterator`."""
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import OrderedDict
|
||||
from copy import deepcopy
|
||||
from functools import singledispatch
|
||||
from typing import Callable, Iterable, Iterator
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gymnasium.error import CustomSpaceError
|
||||
from gymnasium.spaces import (
|
||||
Box,
|
||||
Dict,
|
||||
Discrete,
|
||||
MultiBinary,
|
||||
MultiDiscrete,
|
||||
Space,
|
||||
Tuple,
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["batch_space", "iterate", "concatenate", "create_empty_array"]
|
||||
|
||||
|
||||
@singledispatch
|
||||
def batch_space(space: Space, n: int = 1) -> Space:
|
||||
"""Create a (batched) space, containing multiple copies of a single space.
|
||||
|
||||
Args:
|
||||
space: Space (e.g. the observation space) for a single environment in the vectorized environment.
|
||||
n: Number of environments in the vectorized environment.
|
||||
|
||||
Returns:
|
||||
Space (e.g. the observation space) for a batch of environments in the vectorized environment.
|
||||
|
||||
Raises:
|
||||
ValueError: Cannot batch space that is not a valid :class:`gym.Space` instance
|
||||
|
||||
Example:
|
||||
>>> from gymnasium.spaces import Box, Dict
|
||||
>>> import numpy as np
|
||||
>>> space = Dict({
|
||||
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
|
||||
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)
|
||||
... })
|
||||
>>> batch_space(space, n=5)
|
||||
Dict('position': Box(0.0, 1.0, (5, 3), float32), 'velocity': Box(0.0, 1.0, (5, 2), float32))
|
||||
"""
|
||||
raise ValueError(
|
||||
f"Cannot batch space with type `{type(space)}`. The space must be a valid `gymnasium.Space` instance."
|
||||
)
|
||||
|
||||
|
||||
@batch_space.register(Box)
|
||||
def _batch_space_box(space, n=1):
|
||||
repeats = tuple([n] + [1] * space.low.ndim)
|
||||
low, high = np.tile(space.low, repeats), np.tile(space.high, repeats)
|
||||
return Box(low=low, high=high, dtype=space.dtype, seed=deepcopy(space.np_random))
|
||||
|
||||
|
||||
@batch_space.register(Discrete)
|
||||
def _batch_space_discrete(space, n=1):
|
||||
if space.start == 0:
|
||||
return MultiDiscrete(
|
||||
np.full((n,), space.n, dtype=space.dtype),
|
||||
dtype=space.dtype,
|
||||
seed=deepcopy(space.np_random),
|
||||
)
|
||||
else:
|
||||
return Box(
|
||||
low=space.start,
|
||||
high=space.start + space.n - 1,
|
||||
shape=(n,),
|
||||
dtype=space.dtype,
|
||||
seed=deepcopy(space.np_random),
|
||||
)
|
||||
|
||||
|
||||
@batch_space.register(MultiDiscrete)
|
||||
def _batch_space_multidiscrete(space, n=1):
|
||||
repeats = tuple([n] + [1] * space.nvec.ndim)
|
||||
high = np.tile(space.nvec, repeats) - 1
|
||||
return Box(
|
||||
low=np.zeros_like(high),
|
||||
high=high,
|
||||
dtype=space.dtype,
|
||||
seed=deepcopy(space.np_random),
|
||||
)
|
||||
|
||||
|
||||
@batch_space.register(MultiBinary)
|
||||
def _batch_space_multibinary(space, n=1):
|
||||
return Box(
|
||||
low=0,
|
||||
high=1,
|
||||
shape=(n,) + space.shape,
|
||||
dtype=space.dtype,
|
||||
seed=deepcopy(space.np_random),
|
||||
)
|
||||
|
||||
|
||||
@batch_space.register(Tuple)
|
||||
def _batch_space_tuple(space, n=1):
|
||||
return Tuple(
|
||||
tuple(batch_space(subspace, n=n) for subspace in space.spaces),
|
||||
seed=deepcopy(space.np_random),
|
||||
)
|
||||
|
||||
|
||||
@batch_space.register(Dict)
|
||||
def _batch_space_dict(space, n=1):
|
||||
return Dict(
|
||||
OrderedDict(
|
||||
[
|
||||
(key, batch_space(subspace, n=n))
|
||||
for (key, subspace) in space.spaces.items()
|
||||
]
|
||||
),
|
||||
seed=deepcopy(space.np_random),
|
||||
)
|
||||
|
||||
|
||||
@batch_space.register(Space)
|
||||
def _batch_space_custom(space, n=1):
|
||||
# Without deepcopy, then the space.np_random is batched_space.spaces[0].np_random
|
||||
# Which is an issue if you are sampling actions of both the original space and the batched space
|
||||
batched_space = Tuple(
|
||||
tuple(deepcopy(space) for _ in range(n)), seed=deepcopy(space.np_random)
|
||||
)
|
||||
new_seeds = list(map(int, batched_space.np_random.integers(0, 1e8, n)))
|
||||
batched_space.seed(new_seeds)
|
||||
return batched_space
|
||||
|
||||
|
||||
@singledispatch
|
||||
def iterate(space: Space, items) -> Iterator:
|
||||
"""Iterate over the elements of a (batched) space.
|
||||
|
||||
Args:
|
||||
space: Space to which `items` belong to.
|
||||
items: Items to be iterated over.
|
||||
|
||||
Returns:
|
||||
Iterator over the elements in `items`.
|
||||
|
||||
Raises:
|
||||
ValueError: Space is not an instance of :class:`gym.Space`
|
||||
|
||||
Example:
|
||||
>>> from gymnasium.spaces import Box, Dict
|
||||
>>> import numpy as np
|
||||
>>> space = Dict({
|
||||
... 'position': Box(low=0, high=1, shape=(2, 3), seed=42, dtype=np.float32),
|
||||
... 'velocity': Box(low=0, high=1, shape=(2, 2), seed=42, dtype=np.float32)})
|
||||
>>> items = space.sample()
|
||||
>>> it = iterate(space, items)
|
||||
>>> next(it)
|
||||
OrderedDict([('position', array([0.77395606, 0.43887845, 0.85859793], dtype=float32)), ('velocity', array([0.77395606, 0.43887845], dtype=float32))])
|
||||
>>> next(it)
|
||||
OrderedDict([('position', array([0.697368 , 0.09417735, 0.97562236], dtype=float32)), ('velocity', array([0.85859793, 0.697368 ], dtype=float32))])
|
||||
>>> next(it)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
StopIteration
|
||||
"""
|
||||
raise ValueError(
|
||||
f"Space of type `{type(space)}` is not a valid `gymnasium.Space` instance."
|
||||
)
|
||||
|
||||
|
||||
@iterate.register(Discrete)
|
||||
def _iterate_discrete(space, items):
|
||||
raise TypeError("Unable to iterate over a space of type `Discrete`.")
|
||||
|
||||
|
||||
@iterate.register(Box)
|
||||
@iterate.register(MultiDiscrete)
|
||||
@iterate.register(MultiBinary)
|
||||
def _iterate_base(space, items):
|
||||
try:
|
||||
return iter(items)
|
||||
except TypeError as e:
|
||||
raise TypeError(
|
||||
f"Unable to iterate over the following elements: {items}"
|
||||
) from e
|
||||
|
||||
|
||||
@iterate.register(Tuple)
|
||||
def _iterate_tuple(space, items):
|
||||
# If this is a tuple of custom subspaces only, then simply iterate over items
|
||||
if all(
|
||||
isinstance(subspace, Space)
|
||||
and (not isinstance(subspace, (Box, Discrete, MultiDiscrete, Tuple, Dict)))
|
||||
for subspace in space.spaces
|
||||
):
|
||||
return iter(items)
|
||||
|
||||
return zip(
|
||||
*[iterate(subspace, items[i]) for i, subspace in enumerate(space.spaces)]
|
||||
)
|
||||
|
||||
|
||||
@iterate.register(Dict)
|
||||
def _iterate_dict(space, items):
|
||||
keys, values = zip(
|
||||
*[
|
||||
(key, iterate(subspace, items[key]))
|
||||
for key, subspace in space.spaces.items()
|
||||
]
|
||||
)
|
||||
for item in zip(*values):
|
||||
yield OrderedDict([(key, value) for (key, value) in zip(keys, item)])
|
||||
|
||||
|
||||
@iterate.register(Space)
|
||||
def _iterate_custom(space, items):
|
||||
raise CustomSpaceError(
|
||||
f"Unable to iterate over {items}, since {space} "
|
||||
"is a custom `gymnasium.Space` instance (i.e. not one of "
|
||||
"`Box`, `Dict`, etc...)."
|
||||
)
|
||||
|
||||
|
||||
@singledispatch
|
||||
def concatenate(
|
||||
space: Space, items: Iterable, out: tuple | dict | np.ndarray
|
||||
) -> tuple | dict | np.ndarray:
|
||||
"""Concatenate multiple samples from space into a single object.
|
||||
|
||||
Args:
|
||||
space: Observation space of a single environment in the vectorized environment.
|
||||
items: Samples to be concatenated.
|
||||
out: The output object. This object is a (possibly nested) numpy array.
|
||||
|
||||
Returns:
|
||||
The output object. This object is a (possibly nested) numpy array.
|
||||
|
||||
Raises:
|
||||
ValueError: Space is not a valid :class:`gym.Space` instance
|
||||
|
||||
Example:
|
||||
>>> from gymnasium.spaces import Box
|
||||
>>> import numpy as np
|
||||
>>> space = Box(low=0, high=1, shape=(3,), seed=42, dtype=np.float32)
|
||||
>>> out = np.zeros((2, 3), dtype=np.float32)
|
||||
>>> items = [space.sample() for _ in range(2)]
|
||||
>>> concatenate(space, items, out)
|
||||
array([[0.77395606, 0.43887845, 0.85859793],
|
||||
[0.697368 , 0.09417735, 0.97562236]], dtype=float32)
|
||||
"""
|
||||
raise ValueError(
|
||||
f"Space of type `{type(space)}` is not a valid `gymnasium.Space` instance."
|
||||
)
|
||||
|
||||
|
||||
@concatenate.register(Box)
|
||||
@concatenate.register(Discrete)
|
||||
@concatenate.register(MultiDiscrete)
|
||||
@concatenate.register(MultiBinary)
|
||||
def _concatenate_base(space, items, out):
|
||||
return np.stack(items, axis=0, out=out)
|
||||
|
||||
|
||||
@concatenate.register(Tuple)
|
||||
def _concatenate_tuple(space, items, out):
|
||||
return tuple(
|
||||
concatenate(subspace, [item[i] for item in items], out[i])
|
||||
for (i, subspace) in enumerate(space.spaces)
|
||||
)
|
||||
|
||||
|
||||
@concatenate.register(Dict)
|
||||
def _concatenate_dict(space, items, out):
|
||||
return OrderedDict(
|
||||
[
|
||||
(key, concatenate(subspace, [item[key] for item in items], out[key]))
|
||||
for (key, subspace) in space.spaces.items()
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@concatenate.register(Space)
|
||||
def _concatenate_custom(space, items, out):
|
||||
return tuple(items)
|
||||
|
||||
|
||||
@singledispatch
|
||||
def create_empty_array(
|
||||
space: Space, n: int = 1, fn: Callable[..., np.ndarray] = np.zeros
|
||||
) -> tuple | dict | np.ndarray:
|
||||
"""Create an empty (possibly nested) numpy array.
|
||||
|
||||
Args:
|
||||
space: Observation space of a single environment in the vectorized environment.
|
||||
n: Number of environments in the vectorized environment. If `None`, creates an empty sample from `space`.
|
||||
fn: Function to apply when creating the empty numpy array. Examples of such functions are `np.empty` or `np.zeros`.
|
||||
|
||||
Returns:
|
||||
The output object. This object is a (possibly nested) numpy array.
|
||||
|
||||
Raises:
|
||||
ValueError: Space is not a valid :class:`gym.Space` instance
|
||||
|
||||
Example:
|
||||
>>> from gymnasium.spaces import Box, Dict
|
||||
>>> import numpy as np
|
||||
>>> space = Dict({
|
||||
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
|
||||
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
|
||||
>>> create_empty_array(space, n=2, fn=np.zeros)
|
||||
OrderedDict([('position', array([[0., 0., 0.],
|
||||
[0., 0., 0.]], dtype=float32)), ('velocity', array([[0., 0.],
|
||||
[0., 0.]], dtype=float32))])
|
||||
"""
|
||||
raise ValueError(
|
||||
f"Space of type `{type(space)}` is not a valid `gymnasium.Space` instance."
|
||||
)
|
||||
|
||||
|
||||
@create_empty_array.register(Box)
|
||||
@create_empty_array.register(Discrete)
|
||||
@create_empty_array.register(MultiDiscrete)
|
||||
@create_empty_array.register(MultiBinary)
|
||||
def _create_empty_array_base(space, n=1, fn=np.zeros):
|
||||
shape = space.shape if (n is None) else (n,) + space.shape
|
||||
return fn(shape, dtype=space.dtype)
|
||||
|
||||
|
||||
@create_empty_array.register(Tuple)
|
||||
def _create_empty_array_tuple(space, n=1, fn=np.zeros):
|
||||
return tuple(create_empty_array(subspace, n=n, fn=fn) for subspace in space.spaces)
|
||||
|
||||
|
||||
@create_empty_array.register(Dict)
|
||||
def _create_empty_array_dict(space, n=1, fn=np.zeros):
|
||||
return OrderedDict(
|
||||
[
|
||||
(key, create_empty_array(subspace, n=n, fn=fn))
|
||||
for (key, subspace) in space.spaces.items()
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@create_empty_array.register(Space)
|
||||
def _create_empty_array_custom(space, n=1, fn=np.zeros):
|
||||
return None
|
@@ -1,5 +1,7 @@
|
||||
"""Base class for vectorized environments."""
|
||||
from typing import TYPE_CHECKING, Generic, List, Optional, Tuple, TypeVar, Union
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, Generic, TypeVar
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -11,11 +13,19 @@ from gymnasium.utils import seeding
|
||||
if TYPE_CHECKING:
|
||||
from gymnasium.envs.registration import EnvSpec
|
||||
|
||||
__all__ = ["VectorEnv", "VectorWrapper"]
|
||||
|
||||
ArrayType = TypeVar("ArrayType")
|
||||
|
||||
|
||||
__all__ = [
|
||||
"VectorEnv",
|
||||
"VectorWrapper",
|
||||
"VectorObservationWrapper",
|
||||
"VectorActionWrapper",
|
||||
"VectorRewardWrapper",
|
||||
"ArrayType",
|
||||
]
|
||||
|
||||
|
||||
class VectorEnv(Generic[ObsType, ActType, ArrayType]):
|
||||
"""Base class for vectorized environments to run multiple independent copies of the same environment in parallel.
|
||||
|
||||
@@ -53,29 +63,23 @@ class VectorEnv(Generic[ObsType, ActType, ArrayType]):
|
||||
In other words, a vector of multiple different environments is not supported.
|
||||
"""
|
||||
|
||||
spec: "EnvSpec"
|
||||
spec: EnvSpec
|
||||
|
||||
observation_space: gym.Space
|
||||
action_space: gym.Space
|
||||
|
||||
num_envs: int
|
||||
|
||||
_np_random: Optional[np.random.Generator] = None
|
||||
closed = False
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Base class for vectorized environments.
|
||||
|
||||
Args:
|
||||
num_envs: Number of environments in the vectorized environment.
|
||||
"""
|
||||
self.closed = False
|
||||
_np_random: np.random.Generator | None = None
|
||||
|
||||
def reset(
|
||||
self,
|
||||
*,
|
||||
seed: Optional[Union[int, List[int]]] = None,
|
||||
options: Optional[dict] = None,
|
||||
) -> Tuple[ObsType, dict]: # type: ignore
|
||||
seed: int | list[int] | None = None,
|
||||
options: dict[str, Any] | None = None,
|
||||
) -> tuple[ObsType, dict[str, Any]]: # type: ignore
|
||||
"""Reset all parallel environments and return a batch of initial observations and info.
|
||||
|
||||
Args:
|
||||
@@ -85,13 +89,21 @@ class VectorEnv(Generic[ObsType, ActType, ArrayType]):
|
||||
Returns:
|
||||
A batch of observations and info from the vectorized environment.
|
||||
|
||||
Example:
|
||||
>>> import gymnasium as gym
|
||||
>>> envs = gym.vector.make("CartPole-v1", num_envs=3)
|
||||
>>> envs.reset(seed=42)
|
||||
(array([[ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 ],
|
||||
[ 0.01522993, -0.04562247, -0.04799704, 0.03392126],
|
||||
[-0.03774345, -0.02418869, -0.00942293, 0.0469184 ]],
|
||||
dtype=float32), {})
|
||||
"""
|
||||
if seed is not None:
|
||||
self._np_random, seed = seeding.np_random(seed)
|
||||
|
||||
def step(
|
||||
self, actions: ActType
|
||||
) -> Tuple[ObsType, ArrayType, ArrayType, ArrayType, dict]:
|
||||
) -> tuple[ObsType, ArrayType, ArrayType, ArrayType, dict]:
|
||||
"""Take an action for each parallel environment.
|
||||
|
||||
Args:
|
||||
@@ -104,6 +116,27 @@ class VectorEnv(Generic[ObsType, ActType, ArrayType]):
|
||||
As the vector environments autoreset for a terminating and truncating sub-environments,
|
||||
the returned observation and info is not the final step's observation or info which is instead stored in
|
||||
info as `"final_observation"` and `"final_info"`.
|
||||
|
||||
Example:
|
||||
>>> import gymnasium as gym
|
||||
>>> import numpy as np
|
||||
>>> envs = gym.vector.make("CartPole-v1", num_envs=3)
|
||||
>>> _ = envs.reset(seed=42)
|
||||
>>> actions = np.array([1, 0, 1])
|
||||
>>> observations, rewards, termination, truncation, infos = envs.step(actions)
|
||||
>>> observations
|
||||
array([[ 0.02727336, 0.18847767, 0.03625453, -0.26141977],
|
||||
[ 0.01431748, -0.24002443, -0.04731862, 0.3110827 ],
|
||||
[-0.03822722, 0.1710671 , -0.00848456, -0.2487226 ]],
|
||||
dtype=float32)
|
||||
>>> rewards
|
||||
array([1., 1., 1.])
|
||||
>>> termination
|
||||
array([False, False, False])
|
||||
>>> termination
|
||||
array([False, False, False])
|
||||
>>> infos
|
||||
{}
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -181,7 +214,7 @@ class VectorEnv(Generic[ObsType, ActType, ArrayType]):
|
||||
infos[k], infos[f"_{k}"] = info_array, array_mask
|
||||
return infos
|
||||
|
||||
def _init_info_arrays(self, dtype: type) -> Tuple[np.ndarray, np.ndarray]:
|
||||
def _init_info_arrays(self, dtype: type) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""Initialize the info array.
|
||||
|
||||
Initialize the info array. If the dtype is numeric
|
||||
@@ -285,10 +318,12 @@ class VectorObservationWrapper(VectorWrapper):
|
||||
"""Wraps the vectorized environment to allow a modular transformation of the observation. Equivalent to :class:`gym.ObservationWrapper` for vectorized environments."""
|
||||
|
||||
def reset(self, **kwargs):
|
||||
"""Modifies the observation returned from the environment ``reset`` using the :meth:`observation`."""
|
||||
observation = self.env.reset(**kwargs)
|
||||
return self.observation(observation)
|
||||
|
||||
def step(self, actions):
|
||||
"""Modifies the observation returned from the environment ``step`` using the :meth:`observation`."""
|
||||
observation, reward, termination, truncation, info = self.env.step(actions)
|
||||
return (
|
||||
self.observation(observation),
|
||||
@@ -315,6 +350,7 @@ class VectorActionWrapper(VectorWrapper):
|
||||
"""Wraps the vectorized environment to allow a modular transformation of the actions. Equivalent of :class:`~gym.ActionWrapper` for vectorized environments."""
|
||||
|
||||
def step(self, actions: ActType):
|
||||
"""Steps through the environment using a modified action by :meth:`action`."""
|
||||
return self.env.step(self.action(actions))
|
||||
|
||||
def actions(self, actions: ActType) -> ActType:
|
||||
@@ -333,6 +369,7 @@ class VectorRewardWrapper(VectorWrapper):
|
||||
"""Wraps the vectorized environment to allow a modular transformation of the reward. Equivalent of :class:`~gym.RewardWrapper` for vectorized environments."""
|
||||
|
||||
def step(self, actions):
|
||||
"""Steps through the environment returning a reward modified by :meth:`reward`."""
|
||||
observation, reward, termination, truncation, info = self.env.step(actions)
|
||||
return observation, self.reward(reward), termination, truncation, info
|
||||
|
||||
|
@@ -1,3 +1,5 @@
|
||||
"""Testing of the `gym.make_vec` function."""
|
||||
|
||||
import pytest
|
||||
|
||||
import gymnasium as gym
|
||||
@@ -6,7 +8,8 @@ from gymnasium.wrappers import TimeLimit, TransformObservation
|
||||
from tests.wrappers.utils import has_wrapper
|
||||
|
||||
|
||||
def test_vector_make_id():
|
||||
def test_make_vec_env_id():
|
||||
"""Ensure that the `gym.make_vec` creates the right environment."""
|
||||
env = gym.make_vec("CartPole-v1")
|
||||
assert isinstance(env, AsyncVectorEnv)
|
||||
assert env.num_envs == 1
|
||||
@@ -14,13 +17,15 @@ def test_vector_make_id():
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_envs", [1, 3, 10])
|
||||
def test_vector_make_num_envs(num_envs):
|
||||
def test_make_vec_num_envs(num_envs):
|
||||
"""Test that the `gym.make_vec` num_envs parameter works."""
|
||||
env = gym.make_vec("CartPole-v1", num_envs=num_envs)
|
||||
assert env.num_envs == num_envs
|
||||
env.close()
|
||||
|
||||
|
||||
def test_vector_make_asynchronous():
|
||||
def test_make_vec_vectorization_mode():
|
||||
"""Tests the `gym.make_vec` vectorization mode works."""
|
||||
env = gym.make_vec("CartPole-v1", vectorization_mode="async")
|
||||
assert isinstance(env, AsyncVectorEnv)
|
||||
env.close()
|
||||
@@ -30,7 +35,8 @@ def test_vector_make_asynchronous():
|
||||
env.close()
|
||||
|
||||
|
||||
def test_vector_make_wrappers():
|
||||
def test_make_vec_wrappers():
|
||||
"""Tests that the `gym.make_vec` wrappers parameter works."""
|
||||
env = gym.make_vec("CartPole-v1", num_envs=2, vectorization_mode="sync")
|
||||
assert isinstance(env, SyncVectorEnv)
|
||||
assert len(env.envs) == 2
|
@@ -0,0 +1 @@
|
||||
"""Testing for `gymnasium.experimental.vector`."""
|
||||
|
@@ -1,3 +1,5 @@
|
||||
"""Test the `SyncVectorEnv` implementation."""
|
||||
|
||||
import re
|
||||
from multiprocessing import TimeoutError
|
||||
|
||||
@@ -11,7 +13,7 @@ from gymnasium.error import (
|
||||
)
|
||||
from gymnasium.experimental.vector import AsyncVectorEnv
|
||||
from gymnasium.spaces import Box, Discrete, MultiDiscrete, Tuple
|
||||
from tests.vector.utils import (
|
||||
from tests.experimental.vector.testing_utils import (
|
||||
CustomSpace,
|
||||
make_custom_space_env,
|
||||
make_env,
|
||||
@@ -21,6 +23,7 @@ from tests.vector.utils import (
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_create_async_vector_env(shared_memory):
|
||||
"""Test creating an async vector environment with or without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -30,6 +33,7 @@ def test_create_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_reset_async_vector_env(shared_memory):
|
||||
"""Test the reset of an sync vector environment with or without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -61,6 +65,7 @@ def test_reset_async_vector_env(shared_memory):
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
@pytest.mark.parametrize("use_single_action_space", [True, False])
|
||||
def test_step_async_vector_env(shared_memory, use_single_action_space):
|
||||
"""Test the step async vector environment with and without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -73,7 +78,7 @@ def test_step_async_vector_env(shared_memory, use_single_action_space):
|
||||
actions = [env.single_action_space.sample() for _ in range(8)]
|
||||
else:
|
||||
actions = env.action_space.sample()
|
||||
observations, rewards, terminateds, truncateds, _ = env.step(actions)
|
||||
observations, rewards, terminations, truncations, _ = env.step(actions)
|
||||
|
||||
env.close()
|
||||
|
||||
@@ -88,19 +93,20 @@ def test_step_async_vector_env(shared_memory, use_single_action_space):
|
||||
assert rewards.ndim == 1
|
||||
assert rewards.size == 8
|
||||
|
||||
assert isinstance(terminateds, np.ndarray)
|
||||
assert terminateds.dtype == np.bool_
|
||||
assert terminateds.ndim == 1
|
||||
assert terminateds.size == 8
|
||||
assert isinstance(terminations, np.ndarray)
|
||||
assert terminations.dtype == np.bool_
|
||||
assert terminations.ndim == 1
|
||||
assert terminations.size == 8
|
||||
|
||||
assert isinstance(truncateds, np.ndarray)
|
||||
assert truncateds.dtype == np.bool_
|
||||
assert truncateds.ndim == 1
|
||||
assert truncateds.size == 8
|
||||
assert isinstance(truncations, np.ndarray)
|
||||
assert truncations.dtype == np.bool_
|
||||
assert truncations.ndim == 1
|
||||
assert truncations.size == 8
|
||||
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_call_async_vector_env(shared_memory):
|
||||
"""Test call with async vector environment."""
|
||||
env_fns = [
|
||||
make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4)
|
||||
]
|
||||
@@ -127,6 +133,7 @@ def test_call_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_set_attr_async_vector_env(shared_memory):
|
||||
"""Test `set_attr_` for async vector environment with or without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -139,6 +146,7 @@ def test_set_attr_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_copy_async_vector_env(shared_memory):
|
||||
"""Test observations are a copy of the true observation with and without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
|
||||
# TODO, these tests do nothing, understand the purpose of the tests and fix them
|
||||
@@ -151,6 +159,7 @@ def test_copy_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_no_copy_async_vector_env(shared_memory):
|
||||
"""Test observation are not a copy of the true observation with and without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
|
||||
# TODO, these tests do nothing, understand the purpose of the tests and fix them
|
||||
@@ -163,6 +172,7 @@ def test_no_copy_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_reset_timeout_async_vector_env(shared_memory):
|
||||
"""Test timeout error on reset with and without shared memory."""
|
||||
env_fns = [make_slow_env(0.3, i) for i in range(4)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -175,18 +185,20 @@ def test_reset_timeout_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_step_timeout_async_vector_env(shared_memory):
|
||||
"""Test timeout error on step with and without shared memory."""
|
||||
env_fns = [make_slow_env(0.0, i) for i in range(4)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
with pytest.raises(TimeoutError):
|
||||
env.reset()
|
||||
env.step_async(np.array([0.1, 0.1, 0.3, 0.1]))
|
||||
observations, rewards, terminateds, truncateds, _ = env.step_wait(timeout=0.1)
|
||||
observations, rewards, terminations, truncations, _ = env.step_wait(timeout=0.1)
|
||||
env.close(terminate=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_reset_out_of_order_async_vector_env(shared_memory):
|
||||
"""Test reset being called out of order with and without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -223,6 +235,7 @@ def test_reset_out_of_order_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_step_out_of_order_async_vector_env(shared_memory):
|
||||
"""Test step out of order with and without shared memory."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -258,6 +271,7 @@ def test_step_out_of_order_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_already_closed_async_vector_env(shared_memory):
|
||||
"""Test the error if a function is called if environment is already closed."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
||||
with pytest.raises(ClosedEnvironmentError):
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
||||
@@ -267,6 +281,7 @@ def test_already_closed_async_vector_env(shared_memory):
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_check_spaces_async_vector_env(shared_memory):
|
||||
"""Test check spaces for async vector environment with and without shared memory."""
|
||||
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
|
||||
@@ -277,6 +292,7 @@ def test_check_spaces_async_vector_env(shared_memory):
|
||||
|
||||
|
||||
def test_custom_space_async_vector_env():
|
||||
"""Test custom spaces with async vector environment."""
|
||||
env_fns = [make_custom_space_env(i) for i in range(4)]
|
||||
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=False)
|
||||
@@ -286,7 +302,7 @@ def test_custom_space_async_vector_env():
|
||||
assert isinstance(env.action_space, Tuple)
|
||||
|
||||
actions = ("action-2", "action-3", "action-5", "action-7")
|
||||
step_observations, rewards, terminateds, truncateds, _ = env.step(actions)
|
||||
step_observations, rewards, terminations, truncations, _ = env.step(actions)
|
||||
|
||||
env.close()
|
||||
|
||||
@@ -306,6 +322,7 @@ def test_custom_space_async_vector_env():
|
||||
|
||||
|
||||
def test_custom_space_async_vector_env_shared_memory():
|
||||
"""Test custom space with shared memory."""
|
||||
env_fns = [make_custom_space_env(i) for i in range(4)]
|
||||
with pytest.raises(ValueError):
|
||||
env = AsyncVectorEnv(env_fns, shared_memory=True)
|
||||
|
@@ -1,3 +1,5 @@
|
||||
"""Test the `SyncVectorEnv` implementation."""
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
@@ -14,6 +16,7 @@ from tests.vector.utils import (
|
||||
|
||||
|
||||
def test_create_sync_vector_env():
|
||||
"""Tests creating the sync vector environment."""
|
||||
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
|
||||
env = SyncVectorEnv(env_fns)
|
||||
env.close()
|
||||
@@ -22,6 +25,7 @@ def test_create_sync_vector_env():
|
||||
|
||||
|
||||
def test_reset_sync_vector_env():
|
||||
"""Tests sync vector `reset` function."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
env = SyncVectorEnv(env_fns)
|
||||
observations, infos = env.reset()
|
||||
@@ -38,6 +42,7 @@ def test_reset_sync_vector_env():
|
||||
|
||||
@pytest.mark.parametrize("use_single_action_space", [True, False])
|
||||
def test_step_sync_vector_env(use_single_action_space):
|
||||
"""Test sync vector `steps` function."""
|
||||
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
|
||||
|
||||
env = SyncVectorEnv(env_fns)
|
||||
@@ -77,6 +82,7 @@ def test_step_sync_vector_env(use_single_action_space):
|
||||
|
||||
|
||||
def test_call_sync_vector_env():
|
||||
"""Test sync vector `call` on sub-environments."""
|
||||
env_fns = [
|
||||
make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4)
|
||||
]
|
||||
@@ -102,6 +108,7 @@ def test_call_sync_vector_env():
|
||||
|
||||
|
||||
def test_set_attr_sync_vector_env():
|
||||
"""Test sync vector `set_attr` function."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
||||
|
||||
env = SyncVectorEnv(env_fns)
|
||||
@@ -113,6 +120,7 @@ def test_set_attr_sync_vector_env():
|
||||
|
||||
|
||||
def test_check_spaces_sync_vector_env():
|
||||
"""Tests the sync vector `check_spaces` function."""
|
||||
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
||||
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
|
||||
@@ -123,6 +131,7 @@ def test_check_spaces_sync_vector_env():
|
||||
|
||||
|
||||
def test_custom_space_sync_vector_env():
|
||||
"""Test the use of custom spaces with sync vector environment."""
|
||||
env_fns = [make_custom_space_env(i) for i in range(4)]
|
||||
|
||||
env = SyncVectorEnv(env_fns)
|
||||
@@ -152,6 +161,7 @@ def test_custom_space_sync_vector_env():
|
||||
|
||||
|
||||
def test_sync_vector_env_seed():
|
||||
"""Test seeding for sync vector environments."""
|
||||
env = make_env("BipedalWalker-v3", seed=123)()
|
||||
sync_vector_env = SyncVectorEnv([make_env("BipedalWalker-v3", seed=123)])
|
||||
|
||||
@@ -166,7 +176,7 @@ def test_sync_vector_env_seed():
|
||||
"spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
|
||||
)
|
||||
def test_sync_vector_determinism(spec: EnvSpec, seed: int = 123, n: int = 3):
|
||||
"""Check that for all environments, the sync vector envs produce the same action samples using the same seeds"""
|
||||
"""Check that for all environments, the sync vector envs produce the same action samples using the same seeds."""
|
||||
env_1 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
|
||||
env_2 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
|
||||
assert_rng_equal(env_1.action_space.np_random, env_2.action_space.np_random)
|
||||
|
@@ -1,3 +1,5 @@
|
||||
"""Test vector environment implementations."""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
@@ -11,6 +13,7 @@ from tests.vector.utils import make_env
|
||||
|
||||
@pytest.mark.parametrize("shared_memory", [True, False])
|
||||
def test_vector_env_equal(shared_memory):
|
||||
"""Test that vector environment are equal for both async and sync variants."""
|
||||
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
||||
num_steps = 100
|
||||
|
||||
@@ -31,12 +34,22 @@ def test_vector_env_equal(shared_memory):
|
||||
actions = async_env.action_space.sample()
|
||||
assert actions in sync_env.action_space
|
||||
|
||||
# fmt: off
|
||||
async_observations, async_rewards, async_terminateds, async_truncateds, async_infos = async_env.step(actions)
|
||||
sync_observations, sync_rewards, sync_terminateds, sync_truncateds, sync_infos = sync_env.step(actions)
|
||||
# fmt: on
|
||||
(
|
||||
async_observations,
|
||||
async_rewards,
|
||||
async_terminations,
|
||||
async_truncations,
|
||||
async_infos,
|
||||
) = async_env.step(actions)
|
||||
(
|
||||
sync_observations,
|
||||
sync_rewards,
|
||||
sync_terminations,
|
||||
sync_truncations,
|
||||
sync_infos,
|
||||
) = sync_env.step(actions)
|
||||
|
||||
if any(sync_terminateds) or any(sync_truncateds):
|
||||
if any(sync_terminations) or any(sync_truncations):
|
||||
assert "final_observation" in async_infos
|
||||
assert "_final_observation" in async_infos
|
||||
assert "final_observation" in sync_infos
|
||||
@@ -44,8 +57,8 @@ def test_vector_env_equal(shared_memory):
|
||||
|
||||
assert np.all(async_observations == sync_observations)
|
||||
assert np.all(async_rewards == sync_rewards)
|
||||
assert np.all(async_terminateds == sync_terminateds)
|
||||
assert np.all(async_truncateds == sync_truncateds)
|
||||
assert np.all(async_terminations == sync_terminations)
|
||||
assert np.all(async_truncations == sync_truncations)
|
||||
|
||||
async_env.close()
|
||||
sync_env.close()
|
||||
|
@@ -1,3 +1,4 @@
|
||||
"""Test the vector environment information."""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
@@ -12,12 +13,13 @@ ENV_STEPS = 50
|
||||
SEED = 42
|
||||
|
||||
|
||||
@pytest.mark.parametrize("asynchronous", [True, False])
|
||||
def test_vector_env_info(asynchronous: bool):
|
||||
@pytest.mark.parametrize("vectorization_mode", ["async", "sync"])
|
||||
def test_vector_env_info(vectorization_mode: str):
|
||||
"""Test vector environment info for different vectorization modes."""
|
||||
env = gym.make_vec(
|
||||
ENV_ID,
|
||||
num_envs=NUM_ENVS,
|
||||
vectorization_mode="async" if asynchronous else "sync",
|
||||
vectorization_mode=vectorization_mode,
|
||||
)
|
||||
env.reset(seed=SEED)
|
||||
for _ in range(ENV_STEPS):
|
||||
@@ -41,6 +43,7 @@ def test_vector_env_info(asynchronous: bool):
|
||||
|
||||
@pytest.mark.parametrize("concurrent_ends", [1, 2, 3])
|
||||
def test_vector_env_info_concurrent_termination(concurrent_ends):
|
||||
"""Test the vector environment information works with concurrent termination."""
|
||||
# envs that need to terminate together will have the same action
|
||||
actions = [0] * concurrent_ends + [1] * (NUM_ENVS - concurrent_ends)
|
||||
envs = [make_env(ENV_ID, SEED) for _ in range(NUM_ENVS)]
|
||||
|
@@ -1,23 +1,29 @@
|
||||
"""Tests the vector wrappers work as expected."""
|
||||
import numpy as np
|
||||
|
||||
import gymnasium as gym
|
||||
from gymnasium.experimental.vector import VectorWrapper
|
||||
|
||||
|
||||
class DummyWrapper(VectorWrapper):
|
||||
class DummyVectorWrapper(VectorWrapper):
|
||||
"""Dummy Vector wrapper that contains a counter function to logging the number of times that reset is called."""
|
||||
|
||||
def __init__(self, env):
|
||||
"""Initialises the wrapper with the environment creating a counter variable."""
|
||||
super().__init__(env)
|
||||
self.env = env
|
||||
self.counter = 0
|
||||
|
||||
def reset(self, **kwargs):
|
||||
"""Updates the ``counter`` each time at ``reset`` is called."""
|
||||
super().reset()
|
||||
self.counter += 1
|
||||
|
||||
|
||||
def test_vector_env_wrapper_inheritance():
|
||||
"""Test vector environment wrapper inheritance."""
|
||||
env = gym.make_vec("FrozenLake-v1", vectorization_mode="async")
|
||||
wrapped = DummyWrapper(env)
|
||||
wrapped = DummyVectorWrapper(env)
|
||||
wrapped.reset()
|
||||
assert wrapped.counter == 1
|
||||
|
||||
@@ -25,7 +31,7 @@ def test_vector_env_wrapper_inheritance():
|
||||
def test_vector_env_wrapper_attributes():
|
||||
"""Test if `set_attr`, `call` methods for VecEnvWrapper get correctly forwarded to the vector env it is wrapping."""
|
||||
env = gym.make_vec("CartPole-v1", num_envs=3)
|
||||
wrapped = DummyWrapper(gym.make_vec("CartPole-v1", num_envs=3))
|
||||
wrapped = DummyVectorWrapper(gym.make_vec("CartPole-v1", num_envs=3))
|
||||
|
||||
assert np.allclose(wrapped.call("gravity"), env.call("gravity"))
|
||||
env.set_attr("gravity", [20.0, 20.0, 20.0])
|
163
tests/experimental/vector/testing_utils.py
Normal file
163
tests/experimental/vector/testing_utils.py
Normal file
@@ -0,0 +1,163 @@
|
||||
"""Testing utilitys for `gymnasium.experimental.vector`."""
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gymnasium as gym
|
||||
from gymnasium.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Tuple
|
||||
|
||||
|
||||
BaseGymSpaces = (Box, Discrete, MultiDiscrete, MultiBinary)
|
||||
|
||||
|
||||
spaces = [
|
||||
Box(low=np.array(-1.0), high=np.array(1.0), dtype=np.float64),
|
||||
Box(low=np.array([0.0]), high=np.array([10.0]), dtype=np.float64),
|
||||
Box(
|
||||
low=np.array([-1.0, 0.0, 0.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float64
|
||||
),
|
||||
Box(
|
||||
low=np.array([[-1.0, 0.0], [0.0, -1.0]]), high=np.ones((2, 2)), dtype=np.float64
|
||||
),
|
||||
Box(low=0, high=255, shape=(), dtype=np.uint8),
|
||||
Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8),
|
||||
Discrete(2),
|
||||
Discrete(5, start=-2),
|
||||
Tuple((Discrete(3), Discrete(5))),
|
||||
Tuple(
|
||||
(
|
||||
Discrete(7),
|
||||
Box(low=np.array([0.0, -1.0]), high=np.array([1.0, 1.0]), dtype=np.float64),
|
||||
)
|
||||
),
|
||||
MultiDiscrete([11, 13, 17]),
|
||||
MultiBinary(19),
|
||||
Dict(
|
||||
{
|
||||
"position": Discrete(23),
|
||||
"velocity": Box(
|
||||
low=np.array([0.0]), high=np.array([1.0]), dtype=np.float64
|
||||
),
|
||||
}
|
||||
),
|
||||
Dict(
|
||||
{
|
||||
"position": Dict({"x": Discrete(29), "y": Discrete(31)}),
|
||||
"velocity": Tuple(
|
||||
(Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8))
|
||||
),
|
||||
}
|
||||
),
|
||||
]
|
||||
|
||||
HEIGHT, WIDTH = 64, 64
|
||||
|
||||
|
||||
class SlowEnv(gym.Env):
|
||||
"""A custom slow environment."""
|
||||
|
||||
def __init__(self, slow_reset=0.3):
|
||||
"""Initialises the environment with a slow reset parameter used in the `step` and `reset` functions."""
|
||||
super().__init__()
|
||||
self.slow_reset = slow_reset
|
||||
self.observation_space = Box(
|
||||
low=0, high=255, shape=(HEIGHT, WIDTH, 3), dtype=np.uint8
|
||||
)
|
||||
self.action_space = Box(low=0.0, high=1.0, shape=(), dtype=np.float32)
|
||||
|
||||
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
||||
"""Resets the environment with a time sleep."""
|
||||
super().reset(seed=seed)
|
||||
if self.slow_reset > 0:
|
||||
time.sleep(self.slow_reset)
|
||||
return self.observation_space.sample(), {}
|
||||
|
||||
def step(self, action):
|
||||
"""Steps through the environment with a time sleep."""
|
||||
time.sleep(action)
|
||||
observation = self.observation_space.sample()
|
||||
reward, terminated, truncated = 0.0, False, False
|
||||
return observation, reward, terminated, truncated, {}
|
||||
|
||||
|
||||
class CustomSpace(gym.Space):
|
||||
"""Minimal custom observation space."""
|
||||
|
||||
def sample(self):
|
||||
"""Generates a sample from the custom space."""
|
||||
return self.np_random.integers(0, 10, ())
|
||||
|
||||
def contains(self, x):
|
||||
"""Check if the element `x` is contained within the space."""
|
||||
return 0 <= x <= 10
|
||||
|
||||
def __eq__(self, other):
|
||||
"""Check if the two spaces are equal."""
|
||||
return isinstance(other, CustomSpace)
|
||||
|
||||
|
||||
custom_spaces = [
|
||||
CustomSpace(),
|
||||
Tuple((CustomSpace(), Box(low=0, high=255, shape=(), dtype=np.uint8))),
|
||||
]
|
||||
|
||||
|
||||
class CustomSpaceEnv(gym.Env):
|
||||
"""An environment with custom spaces for observation and action spaces."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialise the environment."""
|
||||
super().__init__()
|
||||
self.observation_space = CustomSpace()
|
||||
self.action_space = CustomSpace()
|
||||
|
||||
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
||||
"""Resets the environment."""
|
||||
super().reset(seed=seed)
|
||||
return "reset", {}
|
||||
|
||||
def step(self, action):
|
||||
"""Steps through the environment."""
|
||||
observation = f"step({action:s})"
|
||||
reward, terminated, truncated = 0.0, False, False
|
||||
return observation, reward, terminated, truncated, {}
|
||||
|
||||
|
||||
def make_env(env_name, seed, **kwargs):
|
||||
"""Creates an environment."""
|
||||
|
||||
def _make():
|
||||
env = gym.make(env_name, disable_env_checker=True, **kwargs)
|
||||
env.action_space.seed(seed)
|
||||
env.reset(seed=seed)
|
||||
return env
|
||||
|
||||
return _make
|
||||
|
||||
|
||||
def make_slow_env(slow_reset, seed):
|
||||
"""Creates an environment with slow reset."""
|
||||
|
||||
def _make():
|
||||
env = SlowEnv(slow_reset=slow_reset)
|
||||
env.reset(seed=seed)
|
||||
return env
|
||||
|
||||
return _make
|
||||
|
||||
|
||||
def make_custom_space_env(seed):
|
||||
"""Creates a custom space environment."""
|
||||
|
||||
def _make():
|
||||
env = CustomSpaceEnv()
|
||||
env.reset(seed=seed)
|
||||
return env
|
||||
|
||||
return _make
|
||||
|
||||
|
||||
def assert_rng_equal(rng_1: np.random.Generator, rng_2: np.random.Generator):
|
||||
"""Tests whether two random number generators are equal."""
|
||||
assert rng_1.bit_generator.state == rng_2.bit_generator.state
|
1
tests/experimental/vector/utils/__init__.py
Normal file
1
tests/experimental/vector/utils/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
"""Module for testing `gymnasium.experimental.vector.utils` functions."""
|
187
tests/experimental/vector/utils/test_shared_memory.py
Normal file
187
tests/experimental/vector/utils/test_shared_memory.py
Normal file
@@ -0,0 +1,187 @@
|
||||
"""Tests `gymnasium.experimental.vector.utils.shared_memory functions."""
|
||||
|
||||
import multiprocessing as mp
|
||||
from collections import OrderedDict
|
||||
from multiprocessing import Array, Process
|
||||
from multiprocessing.sharedctypes import SynchronizedArray
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from gymnasium.error import CustomSpaceError
|
||||
from gymnasium.experimental.vector.utils import (
|
||||
create_shared_memory,
|
||||
read_from_shared_memory,
|
||||
write_to_shared_memory,
|
||||
)
|
||||
from gymnasium.spaces import Dict, Tuple
|
||||
from gymnasium.vector.utils import BaseGymSpaces
|
||||
from tests.experimental.vector.testing_utils import custom_spaces, spaces
|
||||
|
||||
|
||||
expected_types = [
|
||||
Array("d", 1),
|
||||
Array("f", 1),
|
||||
Array("f", 3),
|
||||
Array("f", 4),
|
||||
Array("B", 1),
|
||||
Array("B", 32 * 32 * 3),
|
||||
Array("i", 1),
|
||||
Array("i", 1),
|
||||
(Array("i", 1), Array("i", 1)),
|
||||
(Array("i", 1), Array("f", 2)),
|
||||
Array("B", 3),
|
||||
Array("B", 19),
|
||||
OrderedDict([("position", Array("i", 1)), ("velocity", Array("f", 1))]),
|
||||
OrderedDict(
|
||||
[
|
||||
("position", OrderedDict([("x", Array("i", 1)), ("y", Array("i", 1))])),
|
||||
("velocity", (Array("i", 1), Array("B", 1))),
|
||||
]
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", [1, 8])
|
||||
@pytest.mark.parametrize(
|
||||
"space,expected_type",
|
||||
list(zip(spaces, expected_types)),
|
||||
ids=[space.__class__.__name__ for space in spaces],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"ctx", [None, "fork", "spawn"], ids=["default", "fork", "spawn"]
|
||||
)
|
||||
def test_create_shared_memory(space, expected_type, n, ctx):
|
||||
"""Tests the `create_shared_memory` function with a number of spaces."""
|
||||
|
||||
def assert_nested_type(lhs, rhs, n):
|
||||
assert type(lhs) == type(rhs)
|
||||
if isinstance(lhs, (list, tuple)):
|
||||
assert len(lhs) == len(rhs)
|
||||
for lhs_, rhs_ in zip(lhs, rhs):
|
||||
assert_nested_type(lhs_, rhs_, n)
|
||||
|
||||
elif isinstance(lhs, (dict, OrderedDict)):
|
||||
assert set(lhs.keys()) ^ set(rhs.keys()) == set()
|
||||
for key in lhs.keys():
|
||||
assert_nested_type(lhs[key], rhs[key], n)
|
||||
|
||||
elif isinstance(lhs, SynchronizedArray):
|
||||
# Assert the length of the array
|
||||
assert len(lhs[:]) == n * len(rhs[:])
|
||||
# Assert the data type
|
||||
assert isinstance(lhs[0], type(rhs[0]))
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(lhs)}`.")
|
||||
|
||||
ctx = mp if (ctx is None) else mp.get_context(ctx)
|
||||
shared_memory = create_shared_memory(space, n=n, ctx=ctx)
|
||||
assert_nested_type(shared_memory, expected_type, n=n)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", [1, 8])
|
||||
@pytest.mark.parametrize(
|
||||
"ctx", [None, "fork", "spawn"], ids=["default", "fork", "spawn"]
|
||||
)
|
||||
@pytest.mark.parametrize("space", custom_spaces)
|
||||
def test_create_shared_memory_custom_space(n, ctx, space):
|
||||
"""Tests the `create_shared_memory` function with a custom space."""
|
||||
ctx = mp if (ctx is None) else mp.get_context(ctx)
|
||||
with pytest.raises(CustomSpaceError):
|
||||
create_shared_memory(space, n=n, ctx=ctx)
|
||||
|
||||
|
||||
def _write_shared_memory(space, i, shared_memory, sample):
|
||||
write_to_shared_memory(space, i, sample, shared_memory)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
def test_write_to_shared_memory(space):
|
||||
"""Tests `write_to_shared_memory` function with a list of spaces."""
|
||||
|
||||
def assert_nested_equal(lhs, rhs):
|
||||
assert isinstance(rhs, list)
|
||||
if isinstance(lhs, (list, tuple)):
|
||||
for i in range(len(lhs)):
|
||||
assert_nested_equal(lhs[i], [rhs_[i] for rhs_ in rhs])
|
||||
|
||||
elif isinstance(lhs, (dict, OrderedDict)):
|
||||
for key in lhs.keys():
|
||||
assert_nested_equal(lhs[key], [rhs_[key] for rhs_ in rhs])
|
||||
|
||||
elif isinstance(lhs, SynchronizedArray):
|
||||
assert np.all(np.array(lhs[:]) == np.stack(rhs, axis=0).flatten())
|
||||
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(lhs)}`.")
|
||||
|
||||
shared_memory_n8 = create_shared_memory(space, n=8)
|
||||
samples = [space.sample() for _ in range(8)]
|
||||
|
||||
processes = [
|
||||
Process(
|
||||
target=_write_shared_memory, args=(space, i, shared_memory_n8, samples[i])
|
||||
)
|
||||
for i in range(8)
|
||||
]
|
||||
|
||||
for process in processes:
|
||||
process.start()
|
||||
for process in processes:
|
||||
process.join()
|
||||
|
||||
assert_nested_equal(shared_memory_n8, samples)
|
||||
|
||||
|
||||
def _process_write(space, i, shared_memory, sample):
|
||||
write_to_shared_memory(space, i, sample, shared_memory)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
def test_read_from_shared_memory(space):
|
||||
"""Tests `read_from_shared_memory` function with list of spaces."""
|
||||
|
||||
def assert_nested_equal(lhs, rhs, space, n):
|
||||
assert isinstance(rhs, list)
|
||||
if isinstance(space, Tuple):
|
||||
assert isinstance(lhs, tuple)
|
||||
for i in range(len(lhs)):
|
||||
assert_nested_equal(
|
||||
lhs[i], [rhs_[i] for rhs_ in rhs], space.spaces[i], n
|
||||
)
|
||||
|
||||
elif isinstance(space, Dict):
|
||||
assert isinstance(lhs, OrderedDict)
|
||||
for key in lhs.keys():
|
||||
assert_nested_equal(
|
||||
lhs[key], [rhs_[key] for rhs_ in rhs], space.spaces[key], n
|
||||
)
|
||||
|
||||
elif isinstance(space, BaseGymSpaces):
|
||||
assert isinstance(lhs, np.ndarray)
|
||||
assert lhs.shape == ((n,) + space.shape)
|
||||
assert lhs.dtype == space.dtype
|
||||
assert np.all(lhs == np.stack(rhs, axis=0))
|
||||
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(space)}`")
|
||||
|
||||
shared_memory_n8 = create_shared_memory(space, n=8)
|
||||
memory_view_n8 = read_from_shared_memory(space, shared_memory_n8, n=8)
|
||||
samples = [space.sample() for _ in range(8)]
|
||||
|
||||
processes = [
|
||||
Process(target=_process_write, args=(space, i, shared_memory_n8, samples[i]))
|
||||
for i in range(8)
|
||||
]
|
||||
|
||||
for process in processes:
|
||||
process.start()
|
||||
for process in processes:
|
||||
process.join()
|
||||
|
||||
assert_nested_equal(memory_view_n8, samples, space, n=8)
|
356
tests/experimental/vector/utils/test_space_utils.py
Normal file
356
tests/experimental/vector/utils/test_space_utils.py
Normal file
@@ -0,0 +1,356 @@
|
||||
"""Testing `gymnasium.experimental.vector.utils.space_utils` functions."""
|
||||
|
||||
import copy
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from gymnasium.experimental.vector.utils import (
|
||||
batch_space,
|
||||
concatenate,
|
||||
create_empty_array,
|
||||
iterate,
|
||||
)
|
||||
from gymnasium.spaces import Box, Dict, MultiDiscrete, Space, Tuple
|
||||
from tests.experimental.vector.testing_utils import (
|
||||
BaseGymSpaces,
|
||||
CustomSpace,
|
||||
assert_rng_equal,
|
||||
custom_spaces,
|
||||
spaces,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
def test_concatenate(space):
|
||||
"""Tests the `concatenate` functions with list of spaces."""
|
||||
|
||||
def assert_type(lhs, rhs, n):
|
||||
# Special case: if rhs is a list of scalars, lhs must be an np.ndarray
|
||||
if np.isscalar(rhs[0]):
|
||||
assert isinstance(lhs, np.ndarray)
|
||||
assert all([np.isscalar(rhs[i]) for i in range(n)])
|
||||
else:
|
||||
assert all([isinstance(rhs[i], type(lhs)) for i in range(n)])
|
||||
|
||||
def assert_nested_equal(lhs, rhs, n):
|
||||
assert isinstance(rhs, list)
|
||||
assert (n > 0) and (len(rhs) == n)
|
||||
assert_type(lhs, rhs, n)
|
||||
if isinstance(lhs, np.ndarray):
|
||||
assert lhs.shape[0] == n
|
||||
for i in range(n):
|
||||
assert np.all(lhs[i] == rhs[i])
|
||||
|
||||
elif isinstance(lhs, tuple):
|
||||
for i in range(len(lhs)):
|
||||
rhs_T_i = [rhs[j][i] for j in range(n)]
|
||||
assert_nested_equal(lhs[i], rhs_T_i, n)
|
||||
|
||||
elif isinstance(lhs, OrderedDict):
|
||||
for key in lhs.keys():
|
||||
rhs_T_key = [rhs[j][key] for j in range(n)]
|
||||
assert_nested_equal(lhs[key], rhs_T_key, n)
|
||||
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(lhs)}`.")
|
||||
|
||||
samples = [space.sample() for _ in range(8)]
|
||||
array = create_empty_array(space, n=8)
|
||||
concatenated = concatenate(space, samples, array)
|
||||
|
||||
assert np.all(concatenated == array)
|
||||
assert_nested_equal(array, samples, n=8)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", [1, 8])
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
def test_create_empty_array(space, n):
|
||||
"""Test `create_empty_array` function with list of spaces and different `n` values."""
|
||||
|
||||
def assert_nested_type(arr, space, n):
|
||||
if isinstance(space, BaseGymSpaces):
|
||||
assert isinstance(arr, np.ndarray)
|
||||
assert arr.dtype == space.dtype
|
||||
assert arr.shape == (n,) + space.shape
|
||||
|
||||
elif isinstance(space, Tuple):
|
||||
assert isinstance(arr, tuple)
|
||||
assert len(arr) == len(space.spaces)
|
||||
for i in range(len(arr)):
|
||||
assert_nested_type(arr[i], space.spaces[i], n)
|
||||
|
||||
elif isinstance(space, Dict):
|
||||
assert isinstance(arr, OrderedDict)
|
||||
assert set(arr.keys()) ^ set(space.spaces.keys()) == set()
|
||||
for key in arr.keys():
|
||||
assert_nested_type(arr[key], space.spaces[key], n)
|
||||
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(arr)}`.")
|
||||
|
||||
array = create_empty_array(space, n=n, fn=np.empty)
|
||||
assert_nested_type(array, space, n=n)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", [1, 8])
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
def test_create_empty_array_zeros(space, n):
|
||||
"""Test `create_empty_array` with a list of spaces and different `n`."""
|
||||
|
||||
def assert_nested_type(arr, space, n):
|
||||
if isinstance(space, BaseGymSpaces):
|
||||
assert isinstance(arr, np.ndarray)
|
||||
assert arr.dtype == space.dtype
|
||||
assert arr.shape == (n,) + space.shape
|
||||
assert np.all(arr == 0)
|
||||
|
||||
elif isinstance(space, Tuple):
|
||||
assert isinstance(arr, tuple)
|
||||
assert len(arr) == len(space.spaces)
|
||||
for i in range(len(arr)):
|
||||
assert_nested_type(arr[i], space.spaces[i], n)
|
||||
|
||||
elif isinstance(space, Dict):
|
||||
assert isinstance(arr, OrderedDict)
|
||||
assert set(arr.keys()) ^ set(space.spaces.keys()) == set()
|
||||
for key in arr.keys():
|
||||
assert_nested_type(arr[key], space.spaces[key], n)
|
||||
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(arr)}`.")
|
||||
|
||||
array = create_empty_array(space, n=n, fn=np.zeros)
|
||||
assert_nested_type(array, space, n=n)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
def test_create_empty_array_none_shape_ones(space):
|
||||
"""Tests `create_empty_array` with ``None`` space."""
|
||||
|
||||
def assert_nested_type(arr, space):
|
||||
if isinstance(space, BaseGymSpaces):
|
||||
assert isinstance(arr, np.ndarray)
|
||||
assert arr.dtype == space.dtype
|
||||
assert arr.shape == space.shape
|
||||
assert np.all(arr == 1)
|
||||
|
||||
elif isinstance(space, Tuple):
|
||||
assert isinstance(arr, tuple)
|
||||
assert len(arr) == len(space.spaces)
|
||||
for i in range(len(arr)):
|
||||
assert_nested_type(arr[i], space.spaces[i])
|
||||
|
||||
elif isinstance(space, Dict):
|
||||
assert isinstance(arr, OrderedDict)
|
||||
assert set(arr.keys()) ^ set(space.spaces.keys()) == set()
|
||||
for key in arr.keys():
|
||||
assert_nested_type(arr[key], space.spaces[key])
|
||||
|
||||
else:
|
||||
raise TypeError(f"Got unknown type `{type(arr)}`.")
|
||||
|
||||
array = create_empty_array(space, n=None, fn=np.ones)
|
||||
assert_nested_type(array, space)
|
||||
|
||||
|
||||
expected_batch_spaces_4 = [
|
||||
Box(low=-1.0, high=1.0, shape=(4,), dtype=np.float64),
|
||||
Box(low=0.0, high=10.0, shape=(4, 1), dtype=np.float64),
|
||||
Box(
|
||||
low=np.array(
|
||||
[[-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0]]
|
||||
),
|
||||
high=np.array(
|
||||
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
|
||||
),
|
||||
dtype=np.float64,
|
||||
),
|
||||
Box(
|
||||
low=np.array(
|
||||
[
|
||||
[[-1.0, 0.0], [0.0, -1.0]],
|
||||
[[-1.0, 0.0], [0.0, -1.0]],
|
||||
[[-1.0, 0.0], [0.0, -1]],
|
||||
[[-1.0, 0.0], [0.0, -1.0]],
|
||||
]
|
||||
),
|
||||
high=np.ones((4, 2, 2)),
|
||||
dtype=np.float64,
|
||||
),
|
||||
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
|
||||
Box(low=0, high=255, shape=(4, 32, 32, 3), dtype=np.uint8),
|
||||
MultiDiscrete([2, 2, 2, 2]),
|
||||
Box(low=-2, high=2, shape=(4,), dtype=np.int64),
|
||||
Tuple((MultiDiscrete([3, 3, 3, 3]), MultiDiscrete([5, 5, 5, 5]))),
|
||||
Tuple(
|
||||
(
|
||||
MultiDiscrete([7, 7, 7, 7]),
|
||||
Box(
|
||||
low=np.array([[0.0, -1.0], [0.0, -1.0], [0.0, -1.0], [0.0, -1]]),
|
||||
high=np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]),
|
||||
dtype=np.float64,
|
||||
),
|
||||
)
|
||||
),
|
||||
Box(
|
||||
low=np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]),
|
||||
high=np.array([[10, 12, 16], [10, 12, 16], [10, 12, 16], [10, 12, 16]]),
|
||||
dtype=np.int64,
|
||||
),
|
||||
Box(low=0, high=1, shape=(4, 19), dtype=np.int8),
|
||||
Dict(
|
||||
{
|
||||
"position": MultiDiscrete([23, 23, 23, 23]),
|
||||
"velocity": Box(low=0.0, high=1.0, shape=(4, 1), dtype=np.float64),
|
||||
}
|
||||
),
|
||||
Dict(
|
||||
{
|
||||
"position": Dict(
|
||||
{
|
||||
"x": MultiDiscrete([29, 29, 29, 29]),
|
||||
"y": MultiDiscrete([31, 31, 31, 31]),
|
||||
}
|
||||
),
|
||||
"velocity": Tuple(
|
||||
(
|
||||
MultiDiscrete([37, 37, 37, 37]),
|
||||
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
|
||||
)
|
||||
),
|
||||
}
|
||||
),
|
||||
]
|
||||
|
||||
expected_custom_batch_spaces_4 = [
|
||||
Tuple((CustomSpace(), CustomSpace(), CustomSpace(), CustomSpace())),
|
||||
Tuple(
|
||||
(
|
||||
Tuple((CustomSpace(), CustomSpace(), CustomSpace(), CustomSpace())),
|
||||
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
|
||||
)
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space,expected_batch_space_4",
|
||||
list(zip(spaces, expected_batch_spaces_4)),
|
||||
ids=[space.__class__.__name__ for space in spaces],
|
||||
)
|
||||
def test_batch_space(space, expected_batch_space_4):
|
||||
"""Tests `batch_space` with the expected spaces."""
|
||||
batch_space_4 = batch_space(space, n=4)
|
||||
assert batch_space_4 == expected_batch_space_4
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space,expected_batch_space_4",
|
||||
list(zip(custom_spaces, expected_custom_batch_spaces_4)),
|
||||
ids=[space.__class__.__name__ for space in custom_spaces],
|
||||
)
|
||||
def test_batch_space_custom_space(space, expected_batch_space_4):
|
||||
"""Tests `batch_space` for custom spaces with the expected batch spaces."""
|
||||
batch_space_4 = batch_space(space, n=4)
|
||||
assert batch_space_4 == expected_batch_space_4
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space,batched_space",
|
||||
list(zip(spaces, expected_batch_spaces_4)),
|
||||
ids=[space.__class__.__name__ for space in spaces],
|
||||
)
|
||||
def test_iterate(space, batched_space):
|
||||
"""Test `iterate` function with list of spaces and expected batch space."""
|
||||
items = batched_space.sample()
|
||||
iterator = iterate(batched_space, items)
|
||||
i = 0
|
||||
for i, item in enumerate(iterator):
|
||||
assert item in space
|
||||
assert i == 3
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space,batched_space",
|
||||
list(zip(custom_spaces, expected_custom_batch_spaces_4)),
|
||||
ids=[space.__class__.__name__ for space in custom_spaces],
|
||||
)
|
||||
def test_iterate_custom_space(space, batched_space):
|
||||
"""Test iterating over a custom space."""
|
||||
items = batched_space.sample()
|
||||
iterator = iterate(batched_space, items)
|
||||
i = 0
|
||||
for i, item in enumerate(iterator):
|
||||
assert item in space
|
||||
assert i == 3
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
@pytest.mark.parametrize("n", [4, 5], ids=[f"n={n}" for n in [4, 5]])
|
||||
@pytest.mark.parametrize(
|
||||
"base_seed", [123, 456], ids=[f"seed={base_seed}" for base_seed in [123, 456]]
|
||||
)
|
||||
def test_rng_different_at_each_index(space: Space, n: int, base_seed: int):
|
||||
"""Tests that the rng values produced at each index are different to prevent if the rng is copied for each subspace."""
|
||||
space.seed(base_seed)
|
||||
|
||||
batched_space = batch_space(space, n)
|
||||
assert space.np_random is not batched_space.np_random
|
||||
assert_rng_equal(space.np_random, batched_space.np_random)
|
||||
|
||||
batched_sample = batched_space.sample()
|
||||
sample = list(iterate(batched_space, batched_sample))
|
||||
assert not all(np.all(element == sample[0]) for element in sample), sample
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
|
||||
)
|
||||
@pytest.mark.parametrize("n", [1, 2, 5], ids=[f"n={n}" for n in [1, 2, 5]])
|
||||
@pytest.mark.parametrize(
|
||||
"base_seed", [123, 456], ids=[f"seed={base_seed}" for base_seed in [123, 456]]
|
||||
)
|
||||
def test_deterministic(space: Space, n: int, base_seed: int):
|
||||
"""Tests the batched spaces are deterministic by using a copied version."""
|
||||
# Copy the spaces and check that the np_random are not reference equal
|
||||
space_a = space
|
||||
space_a.seed(base_seed)
|
||||
space_b = copy.deepcopy(space_a)
|
||||
assert_rng_equal(space_a.np_random, space_b.np_random)
|
||||
assert space_a.np_random is not space_b.np_random
|
||||
|
||||
# Batch the spaces and check that the np_random are not reference equal
|
||||
space_a_batched = batch_space(space_a, n)
|
||||
space_b_batched = batch_space(space_b, n)
|
||||
assert_rng_equal(space_a_batched.np_random, space_b_batched.np_random)
|
||||
assert space_a_batched.np_random is not space_b_batched.np_random
|
||||
# Create that the batched space is not reference equal to the origin spaces
|
||||
assert space_a.np_random is not space_a_batched.np_random
|
||||
|
||||
# Check that batched space a and b random number generator are not effected by the original space
|
||||
space_a.sample()
|
||||
space_a_batched_sample = space_a_batched.sample()
|
||||
space_b_batched_sample = space_b_batched.sample()
|
||||
for a_sample, b_sample in zip(
|
||||
iterate(space_a_batched, space_a_batched_sample),
|
||||
iterate(space_b_batched, space_b_batched_sample),
|
||||
):
|
||||
if isinstance(a_sample, tuple):
|
||||
assert len(a_sample) == len(b_sample)
|
||||
for a_subsample, b_subsample in zip(a_sample, b_sample):
|
||||
assert_array_equal(a_subsample, b_subsample)
|
||||
else:
|
||||
assert_array_equal(a_sample, b_sample)
|
Reference in New Issue
Block a user