Add testing for step api compatibility functions and wrapper (#3028)

* Initial commit

* Fixed tests and forced TimeLimit.truncated to always exist when truncated or terminated

* Fix CI issues

* pre-commit

* Revert back to old language

* Revert changes to step api wrapper
This commit is contained in:
Mark Towers
2022-08-18 15:25:46 +01:00
committed by GitHub
parent aa43d135eb
commit a8d4dd7b14
6 changed files with 246 additions and 191 deletions

View File

@@ -36,66 +36,41 @@ def step_to_new_api(
assert len(step_returns) == 4
observations, rewards, dones, infos = step_returns
terminateds = []
truncateds = []
if not is_vector_env:
dones = [dones]
for i in range(len(dones)):
# For every condition, handling - info single env / info vector env (list) / info vector env (dict)
# TimeLimit.truncated attribute not present - implies either terminated or episode still ongoing based on `done`
if (not is_vector_env and "TimeLimit.truncated" not in infos) or (
is_vector_env
and (
(
isinstance(infos, list)
and "TimeLimit.truncated" not in infos[i]
) # vector env, list info api
or (
"TimeLimit.truncated" not in infos
or (
"TimeLimit.truncated" in infos
and not infos["TimeLimit.truncated"][i]
)
)
# vector env, dict info api, for env i, vector mask `_TimeLimit.truncated` is not considered, to be compatible with envpool
# For env i, `TimeLimit.truncated` not being present is treated same as being present and set to False.
# therefore, terminated=True, truncated=True simultaneously is not allowed while using compatibility functions
# with vector info
)
):
terminateds.append(dones[i])
truncateds.append(False)
# This means info["TimeLimit.truncated"] exists and this elif checks if it is True, which means the truncation has occurred but termination has not.
elif (
infos["TimeLimit.truncated"]
if not is_vector_env
else (
infos["TimeLimit.truncated"][i]
if isinstance(infos, dict)
else infos[i]["TimeLimit.truncated"]
)
):
assert dones[i]
terminateds.append(False)
truncateds.append(True)
else:
# This means info["TimeLimit.truncated"] exists but is False, which means the core environment had already terminated,
# but it also exceeded maximum timesteps at the same step. However to be compatible with envpool, and to be backward compatible
# truncated is set to False here.
assert dones[i]
terminateds.append(True)
truncateds.append(False)
return (
observations,
rewards,
np.array(terminateds, dtype=np.bool_) if is_vector_env else terminateds[0],
np.array(truncateds, dtype=np.bool_) if is_vector_env else truncateds[0],
infos,
)
# Cases to handle - info single env / info vector env (list) / info vector env (dict)
if is_vector_env is False:
truncated = infos.pop("TimeLimit.truncated", False)
return (
observations,
rewards,
dones and not truncated,
dones and truncated,
infos,
)
elif isinstance(infos, list):
truncated = np.array(
[info.pop("TimeLimit.truncated", False) for info in infos]
)
return (
observations,
rewards,
np.logical_and(dones, np.logical_not(truncated)),
np.logical_and(dones, truncated),
infos,
)
elif isinstance(infos, dict):
num_envs = len(dones)
truncated = infos.pop("TimeLimit.truncated", np.zeros(num_envs, dtype=bool))
return (
observations,
rewards,
np.logical_and(dones, np.logical_not(truncated)),
np.logical_and(dones, truncated),
infos,
)
else:
raise TypeError(
f"Unexpected value of infos, as is_vector_envs=False, expects `info` to be a list or dict, actual type: {type(infos)}"
)
def step_to_old_api(
@@ -111,44 +86,45 @@ def step_to_old_api(
return step_returns
else:
assert len(step_returns) == 5
observations, rewards, terminateds, truncateds, infos = step_returns
dones = []
if not is_vector_env:
terminateds = [terminateds]
truncateds = [truncateds]
observations, rewards, terminated, truncated, infos = step_returns
n_envs = len(terminateds)
for i in range(n_envs):
dones.append(terminateds[i] or truncateds[i])
if truncateds[i]:
if is_vector_env:
# handle vector infos for dict and list
if isinstance(infos, dict):
if "TimeLimit.truncated" not in infos:
# TODO: This should ideally not be done manually and should use vector_env's _add_info()
infos["TimeLimit.truncated"] = np.zeros(n_envs, dtype=bool)
infos["_TimeLimit.truncated"] = np.zeros(n_envs, dtype=bool)
infos["TimeLimit.truncated"][i] = (
not terminateds[i] or infos["TimeLimit.truncated"][i]
)
infos["_TimeLimit.truncated"][i] = True
else:
# if vector info is a list
infos[i]["TimeLimit.truncated"] = not terminateds[i] or infos[
i
].get("TimeLimit.truncated", False)
else:
infos["TimeLimit.truncated"] = not terminateds[i] or infos.get(
"TimeLimit.truncated", False
)
return (
observations,
rewards,
np.array(dones, dtype=np.bool_) if is_vector_env else dones[0],
infos,
)
# Cases to handle - info single env / info vector env (list) / info vector env (dict)
if is_vector_env is False:
if truncated or terminated:
infos["TimeLimit.truncated"] = truncated and not terminated
return (
observations,
rewards,
terminated or truncated,
infos,
)
elif isinstance(infos, list):
for info, env_truncated, env_terminated in zip(
infos, truncated, terminated
):
if env_truncated or env_terminated:
info["TimeLimit.truncated"] = env_truncated and not env_terminated
return (
observations,
rewards,
np.logical_or(terminated, truncated),
infos,
)
elif isinstance(infos, dict):
if np.logical_or(np.any(truncated), np.any(terminated)):
infos["TimeLimit.truncated"] = np.logical_and(
truncated, np.logical_not(terminated)
)
return (
observations,
rewards,
np.logical_or(terminated, truncated),
infos,
)
else:
raise TypeError(
f"Unexpected value of infos, as is_vector_envs=False, expects `info` to be a list or dict, actual type: {type(infos)}"
)
def step_api_compatibility(