Update box.py

This commit is contained in:
Xingdong Zuo
2019-03-25 00:39:32 +01:00
committed by GitHub
parent 827ed2f791
commit cee92691ad

View File

@@ -1,51 +1,48 @@
import numpy as np
import gym
from gym import logger
from .space import Space
class Box(Space):
"""
A box in R^n.
I.e., each coordinate is bounded.
"""A box in R^n, i.e.each coordinate is bounded.
There are two common use cases:
* Identical bound for each dimension::
>>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32)
Box(3, 4)
* Independent bound for each dimension::
>>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32)
Box(2,)
Example usage:
self.action_space = spaces.Box(low=-10, high=10, shape=(1,))
"""
def __init__(self, low=None, high=None, shape=None, dtype=None):
"""
Two kinds of valid input:
Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided
Box(low=np.array([-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape
"""
def __init__(self, low, high, shape=None, dtype=np.float32):
assert dtype is not None, 'dtype must be explicitly provided. '
self.dtype = np.dtype(dtype)
if shape is None:
assert low.shape == high.shape
shape = low.shape
self.shape = low.shape
self.low = low
self.high = high
else:
assert np.isscalar(low) and np.isscalar(high)
self.shape = tuple(shape)
self.low = np.full(self.shape, low)
self.high = np.full(self.shape, high)
low = low + np.zeros(shape)
high = high + np.zeros(shape)
if dtype is None: # Autodetect type
if (high == 255).all():
dtype = np.uint8
else:
dtype = np.float32
logger.warn("gym.spaces.Box autodetected dtype as {}. Please provide explicit dtype.".format(dtype))
self.low = low.astype(dtype)
self.high = high.astype(dtype)
super(Box, self).__init__(shape, dtype)
self.np_random = np.random.RandomState()
def seed(self, seed):
self.np_random.seed(seed)
self.low = self.low.astype(self.dtype)
self.high = self.high.astype(self.dtype)
super(Box, self).__init__(self.shape, self.dtype)
def sample(self):
high = self.high if self.dtype.kind == 'f' else self.high.astype('int64') + 1
return self.np_random.uniform(low=self.low, high=high, size=self.low.shape).astype(self.dtype)
return self.np_random.uniform(low=self.low, high=high, size=self.shape).astype(self.dtype)
def contains(self, x):
return x.shape == self.shape and (x >= self.low).all() and (x <= self.high).all()
return x.shape == self.shape and np.all(x >= self.low) and np.all(x <= self.high)
def to_jsonable(self, sample_n):
return np.array(sample_n).tolist()