Pydocstyle utils vector docstring (#2788)

* Added pydocstyle to pre-commit

* Added docstrings for tests and updated the tests for autoreset

* Add pydocstyle exclude folder to allow slowly adding new docstrings

* Add docstrings for setup.py and gym/__init__.py, core.py, error.py and logger.py

* Check that all unwrapped environment are of a particular wrapper type

* Reverted back to import gym.spaces.Space to gym.spaces

* Fixed the __init__.py docstring

* Fixed autoreset autoreset test

* Updated gym __init__.py top docstring

* Fix examples in docstrings

* Add docstrings and type hints where known to all functions and classes in gym/utils and gym/vector

* Remove unnecessary import

* Removed "unused error" and make APIerror deprecated at gym 1.0

* Add pydocstyle description to CONTRIBUTING.md

* Added docstrings section to CONTRIBUTING.md

* Added :meth: and :attr: keywords to docstrings

* Added :meth: and :attr: keywords to docstrings

* Imported annotations from __future__ to fix python 3.7

* Add __future__ import annotations for python 3.7

* isort

* Remove utils and vectors for this PR and spaces for previous PR

* Update gym/envs/classic_control/acrobot.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/envs/classic_control/acrobot.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/envs/classic_control/acrobot.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/spaces/dict.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/ezpickle.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/ezpickle.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/play.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Pre-commit

* Updated docstrings with :meth:

* Updated docstrings with :meth:

* Update gym/utils/play.py

* Update gym/utils/play.py

* Update gym/utils/play.py

* Apply suggestions from code review

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* pre-commit

* Update gym/utils/play.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Updated fps and zoom parameter docstring

* Update play docstring

* Apply suggestions from code review

Added suggested corrections from @markus28

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Pre-commit magic

* Update the `gym.make` docstring with a warning for `env_checker`

* Updated and fixed vector docstrings

* Update test names for reflect the project filename style

Co-authored-by: Markus Krimmel <montcyril@gmail.com>
This commit is contained in:
Mark Towers
2022-05-20 14:49:30 +01:00
committed by GitHub
parent 1b09191535
commit e2266025e6
24 changed files with 845 additions and 757 deletions

View File

@@ -1,5 +1,7 @@
"""Numpy utility functions: concatenate space samples and create empty array."""
from collections import OrderedDict
from functools import singledispatch
from typing import Iterable, Union
import numpy as np
@@ -9,36 +11,29 @@ __all__ = ["concatenate", "create_empty_array"]
@singledispatch
def concatenate(space, items, out):
def concatenate(
space: Space, items: Iterable, out: Union[tuple, dict, np.ndarray]
) -> Union[tuple, dict, np.ndarray]:
"""Concatenate multiple samples from space into a single object.
Parameters
----------
items : iterable of samples of `space`
Samples to be concatenated.
Example::
out : tuple, dict, or `np.ndarray`
>>> from gym.spaces import Box
>>> space = Box(low=0, high=1, shape=(3,), dtype=np.float32)
>>> out = np.zeros((2, 3), dtype=np.float32)
>>> items = [space.sample() for _ in range(2)]
>>> concatenate(space, items, out)
array([[0.6348213 , 0.28607962, 0.60760117],
[0.87383074, 0.192658 , 0.2148103 ]], dtype=float32)
Args:
space: Observation space of a single environment in the vectorized environment.
items: Samples to be concatenated.
out: The output object. This object is a (possibly nested) numpy array.
Returns:
The output object. This object is a (possibly nested) numpy array.
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
Returns
-------
out : tuple, dict, or `np.ndarray`
The output object. This object is a (possibly nested) numpy array.
Example
-------
>>> from gym.spaces import Box
>>> space = Box(low=0, high=1, shape=(3,), dtype=np.float32)
>>> out = np.zeros((2, 3), dtype=np.float32)
>>> items = [space.sample() for _ in range(2)]
>>> concatenate(items, out, space)
array([[0.6348213 , 0.28607962, 0.60760117],
[0.87383074, 0.192658 , 0.2148103 ]], dtype=float32)
"""
assert isinstance(items, (list, tuple))
raise ValueError(
f"Space of type `{type(space)}` is not a valid `gym.Space` instance."
)
@@ -76,38 +71,30 @@ def _concatenate_custom(space, items, out):
@singledispatch
def create_empty_array(space, n=1, fn=np.zeros):
def create_empty_array(
space: Space, n: int = 1, fn: callable = np.zeros
) -> Union[tuple, dict, np.ndarray]:
"""Create an empty (possibly nested) numpy array.
Parameters
----------
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
Example::
n : int
Number of environments in the vectorized environment. If `None`, creates
an empty sample from `space`.
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
>>> create_empty_array(space, n=2, fn=np.zeros)
OrderedDict([('position', array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)),
('velocity', array([[0., 0.],
[0., 0.]], dtype=float32))])
fn : callable
Function to apply when creating the empty numpy array. Examples of such
functions are `np.empty` or `np.zeros`.
Args:
space: Observation space of a single environment in the vectorized environment.
n: Number of environments in the vectorized environment. If `None`, creates an empty sample from `space`.
fn: Function to apply when creating the empty numpy array. Examples of such functions are `np.empty` or `np.zeros`.
Returns
-------
out : tuple, dict, or `np.ndarray`
Returns:
The output object. This object is a (possibly nested) numpy array.
Example
-------
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
>>> create_empty_array(space, n=2, fn=np.zeros)
OrderedDict([('position', array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)),
('velocity', array([[0., 0.],
[0., 0.]], dtype=float32))])
"""
raise ValueError(
f"Space of type `{type(space)}` is not a valid `gym.Space` instance."