Algorithmic refactor (#383)

* Refactor/document algorithmic environments and add tests.

* test for 3 row addition

* Fix failing rollout test by reinserting quirk in reversedAddition env

* todo regarding addition3-v0

* Fix python 3 division issues

* typo fix

* Re-generate python3 rollout file to account for ReversedAddition bug fix
This commit is contained in:
Colin
2016-10-21 16:06:48 -07:00
committed by Greg Brockman
parent bee6be5632
commit e84bd0ffe1
11 changed files with 4849 additions and 947 deletions

View File

@@ -1,26 +1,25 @@
"""
Task is to return every second character from the input tape.
Task is to return every nth character from the input tape.
http://arxiv.org/abs/1511.07275
"""
from __future__ import division
import numpy as np
from gym.envs.algorithmic import algorithmic_env
from gym.envs.algorithmic.algorithmic_env import ha
class DuplicatedInputEnv(algorithmic_env.AlgorithmicEnv):
class DuplicatedInputEnv(algorithmic_env.TapeAlgorithmicEnv):
def __init__(self, duplication=2, base=5):
self.duplication = duplication
algorithmic_env.AlgorithmicEnv.__init__(self,
inp_dim=1,
base=base,
chars=True)
def set_data(self):
self.content = {}
self.target = {}
copies = int(self.total_len / self.duplication)
for i in range(copies):
val = self.np_random.randint(self.base)
self.target[i] = val
for d in range(self.duplication):
self.content[ha(np.array([i * self.duplication + d]))] = val
self.total_reward = self.total_len / self.duplication
super(DuplicatedInputEnv, self).__init__(base=base, chars=True)
def generate_input_data(self, size):
res = []
if size < self.duplication:
size = self.duplication
for i in range(size//self.duplication):
char = self.np_random.randint(self.base)
for _ in range(self.duplication):
res.append(char)
return res
def target_from_input_data(self, input_data):
return [input_data[i] for i in range(0, len(input_data), self.duplication)]