PEP-8 Fixes in algorithmic environment (#1382)

Remove trailing whitespaces.
Make line breaks adhere to 80 character limit (not all, but quite a few).
Remove unused imports.
Other miscellaneous PEP-8 fixes.
This commit is contained in:
InstanceLabs
2019-03-16 21:01:10 +01:00
committed by pzhokhov
parent 849da90011
commit f38f39b06f
6 changed files with 28 additions and 23 deletions

View File

@@ -59,8 +59,8 @@ class AlgorithmicEnv(Env):
self.last = 10
# Cumulative reward earned this episode
self.episode_total_reward = None
# Running tally of reward shortfalls. e.g. if there were 10 points to earn and
# we got 8, we'd append -2
# Running tally of reward shortfalls. e.g. if there were 10 points to
# earn and we got 8, we'd append -2
AlgorithmicEnv.reward_shortfalls = []
if chars:
self.charmap = [chr(ord('A')+i) for i in range(base)]
@@ -78,7 +78,8 @@ class AlgorithmicEnv(Env):
self.action_space = Tuple(
[Discrete(len(self.MOVEMENTS)), Discrete(2), Discrete(self.base)]
)
# Can see just what is on the input tape (one of n characters, or nothing)
# Can see just what is on the input tape (one of n characters, or
# nothing)
self.observation_space = Discrete(self.base + 1)
self.seed()
self.reset()
@@ -170,10 +171,11 @@ class AlgorithmicEnv(Env):
try:
correct = pred == self.target[self.write_head_position]
except IndexError:
logger.warn("It looks like you're calling step() even though this "+
"environment has already returned done=True. You should always call "+
"reset() once you receive done=True. Any further steps are undefined "+
"behaviour.")
logger.warn(
"It looks like you're calling step() even though this "
"environment has already returned done=True. You should "
"always call reset() once you receive done=True. Any "
"further steps are undefined behaviour.")
correct = False
if correct:
reward = 1.0
@@ -209,12 +211,11 @@ class AlgorithmicEnv(Env):
AlgorithmicEnv.reward_shortfalls.append(self.episode_total_reward - len(self.target))
AlgorithmicEnv.reward_shortfalls = AlgorithmicEnv.reward_shortfalls[-self.last:]
if len(AlgorithmicEnv.reward_shortfalls) == self.last and \
min(AlgorithmicEnv.reward_shortfalls) >= self.MIN_REWARD_SHORTFALL_FOR_PROMOTION and \
AlgorithmicEnv.min_length < 30:
min(AlgorithmicEnv.reward_shortfalls) >= self.MIN_REWARD_SHORTFALL_FOR_PROMOTION and \
AlgorithmicEnv.min_length < 30:
AlgorithmicEnv.min_length += 1
AlgorithmicEnv.reward_shortfalls = []
def reset(self):
self._check_levelup()
self.last_action = None
@@ -264,7 +265,7 @@ class TapeAlgorithmicEnv(AlgorithmicEnv):
def render_observation(self):
x = self.read_head_position
x_str = "Observation Tape : "
x_str = "Observation Tape : "
for i in range(-2, self.input_width + 2):
if i == x:
x_str += colorize(self._get_str_obs(np.array([i])), 'green', highlight=True)
@@ -278,6 +279,7 @@ class GridAlgorithmicEnv(AlgorithmicEnv):
"""An algorithmic env with a 2-d input grid."""
MOVEMENTS = ['left', 'right', 'up', 'down']
READ_HEAD_START = (0, 0)
def __init__(self, rows, *args, **kwargs):
self.rows = rows
AlgorithmicEnv.__init__(self, *args, **kwargs)
@@ -316,7 +318,7 @@ class GridAlgorithmicEnv(AlgorithmicEnv):
def render_observation(self):
x = self.read_head_position
label = "Observation Grid : "
label = "Observation Grid : "
x_str = ""
for j in range(-1, self.rows+1):
if j != -1:

View File

@@ -4,10 +4,10 @@ the output tape. http://arxiv.org/abs/1511.07275
"""
from gym.envs.algorithmic import algorithmic_env
class CopyEnv(algorithmic_env.TapeAlgorithmicEnv):
def __init__(self, base=5, chars=True):
super(CopyEnv, self).__init__(base=base, chars=chars)
def target_from_input_data(self, input_data):
return input_data

View File

@@ -5,6 +5,7 @@ http://arxiv.org/abs/1511.07275
from __future__ import division
from gym.envs.algorithmic import algorithmic_env
class DuplicatedInputEnv(algorithmic_env.TapeAlgorithmicEnv):
def __init__(self, duplication=2, base=5):
self.duplication = duplication

View File

@@ -4,12 +4,13 @@ the output tape. http://arxiv.org/abs/1511.07275
"""
from gym.envs.algorithmic import algorithmic_env
class RepeatCopyEnv(algorithmic_env.TapeAlgorithmicEnv):
MIN_REWARD_SHORTFALL_FOR_PROMOTION = -.1
def __init__(self, base=5):
super(RepeatCopyEnv, self).__init__(base=base, chars=True)
self.last = 50
def target_from_input_data(self, input_data):
return input_data + list(reversed(input_data)) + input_data

View File

@@ -2,11 +2,12 @@
Task is to reverse content over the input tape.
http://arxiv.org/abs/1511.07275
"""
from gym.envs.algorithmic import algorithmic_env
class ReverseEnv(algorithmic_env.TapeAlgorithmicEnv):
MIN_REWARD_SHORTFALL_FOR_PROMOTION = -.1
def __init__(self, base=2):
super(ReverseEnv, self).__init__(base=base, chars=True, starting_min_length=1)
self.last = 50

View File

@@ -1,7 +1,7 @@
from __future__ import division
import numpy as np
from gym.envs.algorithmic import algorithmic_env
class ReversedAdditionEnv(algorithmic_env.GridAlgorithmicEnv):
def __init__(self, rows=2, base=3):
super(ReversedAdditionEnv, self).__init__(rows=rows, base=base, chars=False)