"""Test suite for RescaleAction wrapper.""" import numpy as np from gymnasium.spaces import Box from gymnasium.wrappers import RescaleAction from tests.testing_env import GenericTestEnv from tests.wrappers.utils import record_action_step def test_rescale_action_wrapper(): """Test that the action is rescale within a min / max bound.""" env = GenericTestEnv( step_func=record_action_step, action_space=Box( np.array([0, 1, -np.inf, 5, -np.inf], dtype=np.float32), np.array([1, 3, np.inf, np.inf, 7], dtype=np.float32), ), ) wrapped_env = RescaleAction( env, min_action=np.array([-5, 0, -np.inf, -1, -np.inf], dtype=np.float32), max_action=np.array([5, 1.0, np.inf, np.inf, 4], dtype=np.float32), ) assert wrapped_env.action_space == Box( np.array([-5, 0, -np.inf, -1, -np.inf], dtype=np.float32), np.array([5, 1, np.inf, np.inf, 4], dtype=np.float32), ) for sample_action, expected_action in ( ( np.array([0.0, 0.5, 7.0, -1.0, -23.0], dtype=np.float32), np.array([0.5, 2.0, 7.0, 5.0, -20.0], dtype=np.float32), ), ( np.array([-5.0, 0.0, -4.0, 0.0, -3.0], dtype=np.float32), np.array([0.0, 1.0, -4.0, 6.0, 0.0], dtype=np.float32), ), ( np.array([5.0, 1.0, 0.0, 1.0, 4.0], dtype=np.float32), np.array([1.0, 3.0, 0.0, 7.0, 7.0], dtype=np.float32), ), ): assert sample_action in wrapped_env.action_space assert expected_action in env.action_space _, _, _, _, info = wrapped_env.step(sample_action) assert np.all(info["action"] == expected_action)