"""Test suite for NumPyToTorch wrapper.""" import pickle from typing import NamedTuple import numpy as np import pytest import gymnasium torch = pytest.importorskip("torch") from gymnasium.utils.env_checker import data_equivalence # noqa: E402 from gymnasium.wrappers.numpy_to_torch import ( # noqa: E402 NumpyToTorch, numpy_to_torch, torch_to_numpy, ) from tests.testing_env import GenericTestEnv # noqa: E402 class ExampleNamedTuple(NamedTuple): a: np.ndarray b: np.ndarray @pytest.mark.parametrize( "value, expected_value", [ (1.0, np.array(1.0, dtype=np.float32)), (2, np.array(2, dtype=np.int64)), ((3.0, 4), (np.array(3.0, dtype=np.float32), np.array(4, dtype=np.int64))), ([3.0, 4], [np.array(3.0, dtype=np.float32), np.array(4, dtype=np.int64)]), ( { "a": 6.0, "b": 7, }, {"a": np.array(6.0, dtype=np.float32), "b": np.array(7, dtype=np.int64)}, ), (np.array(1.0, dtype=np.float32), np.array(1.0, dtype=np.float32)), (np.array(1.0, dtype=np.uint8), np.array(1.0, dtype=np.uint8)), (np.array([1, 2], dtype=np.int32), np.array([1, 2], dtype=np.int32)), ( np.array([[1.0], [2.0]], dtype=np.int32), np.array([[1.0], [2.0]], dtype=np.int32), ), ( { "a": ( 1, np.array(2.0, dtype=np.float32), np.array([3, 4], dtype=np.int32), ), "b": {"c": 5}, }, { "a": ( np.array(1, dtype=np.int64), np.array(2.0, dtype=np.float32), np.array([3, 4], dtype=np.int32), ), "b": {"c": np.array(5, dtype=np.int64)}, }, ), ( ExampleNamedTuple( a=np.array([1, 2], dtype=np.int32), b=np.array([1.0, 2.0], dtype=np.float32), ), ExampleNamedTuple( a=np.array([1, 2], dtype=np.int32), b=np.array([1.0, 2.0], dtype=np.float32), ), ), (None, None), ], ) def test_roundtripping(value, expected_value): """We test numpy -> torch -> numpy as this is direction in the NumpyToTorch wrapper.""" roundtripped_value = torch_to_numpy(numpy_to_torch(value)) assert data_equivalence(roundtripped_value, expected_value) def numpy_reset_func(self, seed=None, options=None): """A Numpy-based reset function.""" return np.array([1.0, 2.0, 3.0]), {"data": np.array([1, 2, 3])} def numpy_step_func(self, action): """A Numpy-based step function.""" assert isinstance(action, np.ndarray), type(action) return ( np.array([1, 2, 3]), 5.0, True, False, {"data": np.array([1.0, 2.0])}, ) def test_numpy_to_torch(): """Tests the ``TorchToNumpy`` wrapper.""" numpy_env = GenericTestEnv(reset_func=numpy_reset_func, step_func=numpy_step_func) obs, info = numpy_env.reset() assert isinstance(obs, np.ndarray) assert isinstance(info, dict) and isinstance(info["data"], np.ndarray) obs, reward, terminated, truncated, info = numpy_env.step(np.array([1, 2])) assert isinstance(obs, np.ndarray) assert isinstance(reward, float) assert isinstance(terminated, bool) and isinstance(truncated, bool) assert isinstance(info, dict) and isinstance(info["data"], np.ndarray) # Check that the wrapped version is correct. torch_env = NumpyToTorch(numpy_env) # Check that the reset and step for torch environment are as expected obs, info = torch_env.reset() assert isinstance(obs, torch.Tensor) assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor) obs, reward, terminated, truncated, info = torch_env.step(torch.tensor([1, 2])) assert isinstance(obs, torch.Tensor) assert isinstance(reward, float) assert isinstance(terminated, bool) and isinstance(truncated, bool) assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor) # Check that the wrapped environment can render. This implicitly returns None and requires a # None -> None conversion torch_env.render() # Test that the wrapped environment can be pickled env = gymnasium.make("CartPole-v1", disable_env_checker=True) wrapped_env = NumpyToTorch(env) pkl = pickle.dumps(wrapped_env) pickle.loads(pkl)