import numpy as np from gym import Space, spaces, logger class Box(Space): """ A box in R^n. I.e., each coordinate is bounded. Example usage: self.action_space = spaces.Box(low=-10, high=10, shape=(1,)) """ def __init__(self, low=None, high=None, shape=None, dtype=None): """ Two kinds of valid input: Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided Box(np.array(low=[-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape """ if shape is None: assert low.shape == high.shape shape = low.shape else: assert np.isscalar(low) and np.isscalar(high) low = low + np.zeros(shape) high = high + np.zeros(shape) if dtype is None: # Autodetect type if (high == 255).all(): dtype = np.uint8 else: dtype = np.float32 logger.warn("gym.spaces.Box autodetected dtype as %s. Please provide explicit dtype." % dtype) self.low = low.astype(dtype) self.high = high.astype(dtype) Space.__init__(self, shape, dtype) def sample(self): return spaces.np_random.uniform(low=self.low, high=self.high + (0 if self.dtype.kind == 'f' else 1), size=self.low.shape).astype(self.dtype) def contains(self, x): return x.shape == self.shape and (x >= self.low).all() and (x <= self.high).all() def to_jsonable(self, sample_n): return np.array(sample_n).tolist() def from_jsonable(self, sample_n): return [np.asarray(sample) for sample in sample_n] def __repr__(self): return "Box" + str(self.shape) def __eq__(self, other): return np.allclose(self.low, other.low) and np.allclose(self.high, other.high)