import numpy as np import warnings from .space import Space from gym import logger class Box(Space): """ A (possibly unbounded) box in R^n. Specifically, a Box represents the Cartesian product of n closed intervals. Each interval has the form of one of [a, b], (-oo, b], [a, oo), or (-oo, oo). There are two common use cases: * Identical bound for each dimension:: >>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32) Box(3, 4) * Independent bound for each dimension:: >>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32) Box(2,) """ def __init__(self, low, high, shape=None, dtype=np.float32): assert dtype is not None, "dtype must be explicitly provided. " self.dtype = np.dtype(dtype) # determine shape if it isn't provided directly if shape is not None: shape = tuple(shape) assert ( np.isscalar(low) or low.shape == shape ), "low.shape doesn't match provided shape" assert ( np.isscalar(high) or high.shape == shape ), "high.shape doesn't match provided shape" elif not np.isscalar(low): shape = low.shape assert ( np.isscalar(high) or high.shape == shape ), "high.shape doesn't match low.shape" elif not np.isscalar(high): shape = high.shape assert ( np.isscalar(low) or low.shape == shape ), "low.shape doesn't match high.shape" else: raise ValueError( "shape must be provided or inferred from the shapes of low or high" ) if np.isscalar(low): low = np.full(shape, low, dtype=dtype) if np.isscalar(high): high = np.full(shape, high, dtype=dtype) self.shape = shape self.low = low self.high = high def _get_precision(dtype): if np.issubdtype(dtype, np.floating): return np.finfo(dtype).precision else: return np.inf low_precision = _get_precision(self.low.dtype) high_precision = _get_precision(self.high.dtype) dtype_precision = _get_precision(self.dtype) if min(low_precision, high_precision) > dtype_precision: logger.warn( "Box bound precision lowered by casting to {}".format(self.dtype) ) self.low = self.low.astype(self.dtype) self.high = self.high.astype(self.dtype) # Boolean arrays which indicate the interval type for each coordinate self.bounded_below = -np.inf < self.low self.bounded_above = np.inf > self.high super(Box, self).__init__(self.shape, self.dtype) def is_bounded(self, manner="both"): below = np.all(self.bounded_below) above = np.all(self.bounded_above) if manner == "both": return below and above elif manner == "below": return below elif manner == "above": return above else: raise ValueError("manner is not in {'below', 'above', 'both'}") def sample(self): """ Generates a single random sample inside of the Box. In creating a sample of the box, each coordinate is sampled according to the form of the interval: * [a, b] : uniform distribution * [a, oo) : shifted exponential distribution * (-oo, b] : shifted negative exponential distribution * (-oo, oo) : normal distribution """ high = self.high if self.dtype.kind == "f" else self.high.astype("int64") + 1 sample = np.empty(self.shape) # Masking arrays which classify the coordinates according to interval # type unbounded = ~self.bounded_below & ~self.bounded_above upp_bounded = ~self.bounded_below & self.bounded_above low_bounded = self.bounded_below & ~self.bounded_above bounded = self.bounded_below & self.bounded_above # Vectorized sampling by interval type sample[unbounded] = self.np_random.normal(size=unbounded[unbounded].shape) sample[low_bounded] = ( self.np_random.exponential(size=low_bounded[low_bounded].shape) + self.low[low_bounded] ) sample[upp_bounded] = ( -self.np_random.exponential(size=upp_bounded[upp_bounded].shape) + self.high[upp_bounded] ) sample[bounded] = self.np_random.uniform( low=self.low[bounded], high=high[bounded], size=bounded[bounded].shape ) if self.dtype.kind == "i": sample = np.floor(sample) return sample.astype(self.dtype) def contains(self, x): if not isinstance(x, np.ndarray): warnings.warn("Casting input x to numpy array.") x = np.asarray(x, dtype=self.dtype) return ( np.can_cast(x.dtype, self.dtype) and x.shape == self.shape and np.any(x >= self.low) and np.any(x <= self.high) ) def to_jsonable(self, sample_n): return np.array(sample_n).tolist() def from_jsonable(self, sample_n): return [np.asarray(sample) for sample in sample_n] def __repr__(self): return f"Box({self.low}, {self.high}, {self.shape}, {self.dtype})" def __eq__(self, other): return ( isinstance(other, Box) and (self.shape == other.shape) and np.allclose(self.low, other.low) and np.allclose(self.high, other.high) )