--- title: Vector --- # Vector ```{eval-rst} .. autofunction:: gymnasium.vector.make ``` ## VectorEnv ```{eval-rst} .. attribute:: gymnasium.vector.VectorEnv.action_space The (batched) action space. The input actions of `step` must be valid elements of `action_space`.:: >>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3) >>> envs.action_space MultiDiscrete([2 2 2]) .. attribute:: gymnasium.vector.VectorEnv.observation_space The (batched) observation space. The observations returned by `reset` and `step` are valid elements of `observation_space`.:: >>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3) >>> envs.observation_space Box([[-4.8 ...]], [[4.8 ...]], (3, 4), float32) .. attribute:: gymnasium.vector.VectorEnv.single_action_space The action space of an environment copy.:: >>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3) >>> envs.single_action_space Discrete(2) .. attribute:: gymnasium.vector.VectorEnv.single_observation_space The observation space of an environment copy.:: >>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3) >>> envs.single_action_space Box([-4.8 ...], [4.8 ...], (4,), float32) ``` ### Reset ```{eval-rst} .. automethod:: gymnasium.vector.VectorEnv.reset ``` ```python >>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3) >>> envs.reset() (array([[-0.02240574, -0.03439831, -0.03904812, 0.02810693], [ 0.01586068, 0.01929009, 0.02394426, 0.04016077], [-0.01314174, 0.03893502, -0.02400815, 0.0038326 ]], dtype=float32), {}) ``` ### Step ```{eval-rst} .. automethod:: gymnasium.vector.VectorEnv.step ``` ```python >>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3) >>> envs.reset() >>> actions = np.array([1, 0, 1]) >>> observations, rewards, dones, infos = envs.step(actions) >>> observations array([[ 0.00122802, 0.16228443, 0.02521779, -0.23700266], [ 0.00788269, -0.17490888, 0.03393489, 0.31735462], [ 0.04918966, 0.19421194, 0.02938497, -0.29495203]], dtype=float32) >>> rewards array([1., 1., 1.]) >>> dones array([False, False, False]) >>> infos {} ```