import numpy as np import pytest from gymnasium.envs.registration import EnvSpec from gymnasium.spaces import Box, Discrete, MultiDiscrete, Tuple from gymnasium.vector.sync_vector_env import SyncVectorEnv from tests.envs.utils import all_testing_env_specs from tests.vector.utils import ( CustomSpace, assert_rng_equal, make_custom_space_env, make_env, ) def test_create_sync_vector_env(): env_fns = [make_env("FrozenLake-v1", i) for i in range(8)] env = SyncVectorEnv(env_fns) env.close() assert env.num_envs == 8 def test_reset_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(8)] env = SyncVectorEnv(env_fns) observations, infos = env.reset() env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert isinstance(infos, dict) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape del observations @pytest.mark.parametrize("use_single_action_space", [True, False]) def test_step_sync_vector_env(use_single_action_space): env_fns = [make_env("FrozenLake-v1", i) for i in range(8)] env = SyncVectorEnv(env_fns) observations = env.reset() assert isinstance(env.single_action_space, Discrete) assert isinstance(env.action_space, MultiDiscrete) if use_single_action_space: actions = [env.single_action_space.sample() for _ in range(8)] else: actions = env.action_space.sample() observations, rewards, terminateds, truncateds, _ = env.step(actions) env.close() assert isinstance(env.observation_space, MultiDiscrete) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(rewards, np.ndarray) assert isinstance(rewards[0], (float, np.floating)) assert rewards.ndim == 1 assert rewards.size == 8 assert isinstance(terminateds, np.ndarray) assert terminateds.dtype == np.bool_ assert terminateds.ndim == 1 assert terminateds.size == 8 assert isinstance(truncateds, np.ndarray) assert truncateds.dtype == np.bool_ assert truncateds.ndim == 1 assert truncateds.size == 8 def test_call_sync_vector_env(): env_fns = [ make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4) ] env = SyncVectorEnv(env_fns) _ = env.reset() images = env.call("render") gravity = env.call("gravity") env.close() assert isinstance(images, tuple) assert len(images) == 4 for i in range(4): assert len(images[i]) == 1 assert isinstance(images[i][0], np.ndarray) assert isinstance(gravity, tuple) assert len(gravity) == 4 for i in range(4): assert isinstance(gravity[i], float) assert gravity[i] == 9.8 def test_set_attr_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(4)] env = SyncVectorEnv(env_fns) env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62]) gravity = env.get_attr("gravity") assert gravity == (9.81, 3.72, 8.87, 1.62) env.close() def test_check_spaces_sync_vector_env(): # CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2) env_fns = [make_env("CartPole-v1", i) for i in range(8)] # FrozenLake-v1 - Discrete(16), action_space: Discrete(4) env_fns[1] = make_env("FrozenLake-v1", 1) with pytest.raises(RuntimeError): env = SyncVectorEnv(env_fns) env.close() def test_custom_space_sync_vector_env(): env_fns = [make_custom_space_env(i) for i in range(4)] env = SyncVectorEnv(env_fns) reset_observations, infos = env.reset() assert isinstance(env.single_action_space, CustomSpace) assert isinstance(env.action_space, Tuple) assert isinstance(infos, dict) actions = ("action-2", "action-3", "action-5", "action-7") step_observations, rewards, terminateds, truncateds, infos = env.step(actions) env.close() assert isinstance(env.single_observation_space, CustomSpace) assert isinstance(env.observation_space, Tuple) assert isinstance(infos, dict) assert isinstance(reset_observations, tuple) assert reset_observations == ("reset", "reset", "reset", "reset") assert isinstance(step_observations, tuple) assert step_observations == ( "step(action-2)", "step(action-3)", "step(action-5)", "step(action-7)", ) def test_sync_vector_env_seed(): env = make_env("BipedalWalker-v3", seed=123)() sync_vector_env = SyncVectorEnv([make_env("BipedalWalker-v3", seed=123)]) assert_rng_equal(env.action_space.np_random, sync_vector_env.action_space.np_random) for _ in range(100): env_action = env.action_space.sample() vector_action = sync_vector_env.action_space.sample() assert np.all(env_action == vector_action) @pytest.mark.parametrize( "spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs] ) def test_sync_vector_determinism(spec: EnvSpec, seed: int = 123, n: int = 3): """Check that for all environments, the sync vector envs produce the same action samples using the same seeds""" env_1 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)]) env_2 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)]) assert_rng_equal(env_1.action_space.np_random, env_2.action_space.np_random) for _ in range(100): env_1_samples = env_1.action_space.sample() env_2_samples = env_2.action_space.sample() assert np.all(env_1_samples == env_2_samples)