import time from typing import Optional import numpy as np import gymnasium as gym from gymnasium.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Tuple from gymnasium.utils.seeding import RandomNumberGenerator spaces = [ Box(low=np.array(-1.0), high=np.array(1.0), dtype=np.float64), Box(low=np.array([0.0]), high=np.array([10.0]), dtype=np.float64), Box( low=np.array([-1.0, 0.0, 0.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float64 ), Box( low=np.array([[-1.0, 0.0], [0.0, -1.0]]), high=np.ones((2, 2)), dtype=np.float64 ), Box(low=0, high=255, shape=(), dtype=np.uint8), Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8), Discrete(2), Discrete(5, start=-2), Tuple((Discrete(3), Discrete(5))), Tuple( ( Discrete(7), Box(low=np.array([0.0, -1.0]), high=np.array([1.0, 1.0]), dtype=np.float64), ) ), MultiDiscrete([11, 13, 17]), MultiBinary(19), Dict( { "position": Discrete(23), "velocity": Box( low=np.array([0.0]), high=np.array([1.0]), dtype=np.float64 ), } ), Dict( { "position": Dict({"x": Discrete(29), "y": Discrete(31)}), "velocity": Tuple( (Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8)) ), } ), ] HEIGHT, WIDTH = 64, 64 class UnittestSlowEnv(gym.Env): def __init__(self, slow_reset=0.3): super().__init__() self.slow_reset = slow_reset self.observation_space = Box( low=0, high=255, shape=(HEIGHT, WIDTH, 3), dtype=np.uint8 ) self.action_space = Box(low=0.0, high=1.0, shape=(), dtype=np.float32) def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None): super().reset(seed=seed) if self.slow_reset > 0: time.sleep(self.slow_reset) return self.observation_space.sample(), {} def step(self, action): time.sleep(action) observation = self.observation_space.sample() reward, terminated, truncated = 0.0, False, False return observation, reward, terminated, truncated, {} class CustomSpace(gym.Space): """Minimal custom observation space.""" def sample(self): return self.np_random.integers(0, 10, ()) def contains(self, x): return 0 <= x <= 10 def __eq__(self, other): return isinstance(other, CustomSpace) custom_spaces = [ CustomSpace(), Tuple((CustomSpace(), Box(low=0, high=255, shape=(), dtype=np.uint8))), ] class CustomSpaceEnv(gym.Env): def __init__(self): super().__init__() self.observation_space = CustomSpace() self.action_space = CustomSpace() def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None): super().reset(seed=seed) return "reset", {} def step(self, action): observation = f"step({action:s})" reward, terminated, truncated = 0.0, False, False return observation, reward, terminated, truncated, {} def make_env(env_name, seed, **kwargs): def _make(): env = gym.make(env_name, disable_env_checker=True, **kwargs) env.action_space.seed(seed) env.reset(seed=seed) return env return _make def make_slow_env(slow_reset, seed): def _make(): env = UnittestSlowEnv(slow_reset=slow_reset) env.reset(seed=seed) return env return _make def make_custom_space_env(seed): def _make(): env = CustomSpaceEnv() env.reset(seed=seed) return env return _make def assert_rng_equal(rng_1: RandomNumberGenerator, rng_2: RandomNumberGenerator): assert rng_1.bit_generator.state == rng_2.bit_generator.state