from itertools import zip_longest from typing import Optional import numpy as np import pytest import gymnasium from gymnasium.spaces import Box, Graph, utils from gymnasium.utils.env_checker import data_equivalence from tests.spaces.utils import TESTING_SPACES, TESTING_SPACES_IDS TESTING_SPACES_EXPECTED_FLATDIMS = [ # Discrete 3, 3, # Box 1, 4, 2, 2, 2, # Multi-discrete 4, 10, # Multi-binary 8, 6, # Text 6, 6, 6, # Tuple 9, 7, 10, 6, None, # Dict 7, 8, 17, None, # Graph None, None, None, # Sequence None, None, None, ] @pytest.mark.parametrize( ["space", "flatdim"], zip_longest(TESTING_SPACES, TESTING_SPACES_EXPECTED_FLATDIMS), ids=TESTING_SPACES_IDS, ) def test_flatdim(space: gymnasium.spaces.Space, flatdim: Optional[int]): """Checks that the flattened dims of the space is equal to an expected value.""" if space.is_np_flattenable: dim = utils.flatdim(space) assert dim == flatdim, f"Expected {dim} to equal {flatdim}" else: with pytest.raises( ValueError, ): utils.flatdim(space) @pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS) def test_flatten_space(space): """Test that the flattened spaces are a box and have the `flatdim` shape.""" flat_space = utils.flatten_space(space) if space.is_np_flattenable: assert isinstance(flat_space, Box) (single_dim,) = flat_space.shape flatdim = utils.flatdim(space) assert single_dim == flatdim elif isinstance(flat_space, Graph): assert isinstance(space, Graph) (node_single_dim,) = flat_space.node_space.shape node_flatdim = utils.flatdim(space.node_space) assert node_single_dim == node_flatdim if flat_space.edge_space is not None: (edge_single_dim,) = flat_space.edge_space.shape edge_flatdim = utils.flatdim(space.edge_space) assert edge_single_dim == edge_flatdim else: assert isinstance( space, (gymnasium.spaces.Tuple, gymnasium.spaces.Dict, gymnasium.spaces.Sequence), ) @pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS) def test_flatten(space): """Test that a flattened sample have the `flatdim` shape.""" flattened_sample = utils.flatten(space, space.sample()) if space.is_np_flattenable: assert isinstance(flattened_sample, np.ndarray) (single_dim,) = flattened_sample.shape flatdim = utils.flatdim(space) assert single_dim == flatdim else: assert isinstance(flattened_sample, (tuple, dict, Graph)) @pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS) def test_flat_space_contains_flat_points(space): """Test that the flattened samples are contained within the flattened space.""" flattened_samples = [utils.flatten(space, space.sample()) for _ in range(10)] flat_space = utils.flatten_space(space) for flat_sample in flattened_samples: assert flat_sample in flat_space @pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS) def test_flatten_roundtripping(space): """Tests roundtripping with flattening and unflattening are equal to the original sample.""" samples = [space.sample() for _ in range(10)] flattened_samples = [utils.flatten(space, sample) for sample in samples] unflattened_samples = [ utils.unflatten(space, sample) for sample in flattened_samples ] for original, roundtripped in zip(samples, unflattened_samples): assert data_equivalence(original, roundtripped)