import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env from gym.spaces import Box class InvertedPendulumEnv(mujoco_env.MujocoEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", "single_rgb_array", "single_depth_array", ], "render_fps": 25, } def __init__(self, **kwargs): utils.EzPickle.__init__(self) observation_space = Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float64) mujoco_env.MujocoEnv.__init__( self, "inverted_pendulum.xml", 2, mujoco_bindings="mujoco_py", observation_space=observation_space, **kwargs ) def step(self, a): reward = 1.0 self.do_simulation(a, self.frame_skip) self.renderer.render_step() ob = self._get_obs() notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= 0.2) done = not notdone return ob, reward, done, {} def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( size=self.model.nq, low=-0.01, high=0.01 ) qvel = self.init_qvel + self.np_random.uniform( size=self.model.nv, low=-0.01, high=0.01 ) self.set_state(qpos, qvel) return self._get_obs() def _get_obs(self): return np.concatenate([self.sim.data.qpos, self.sim.data.qvel]).ravel() def viewer_setup(self): v = self.viewer v.cam.trackbodyid = 0 v.cam.distance = self.model.stat.extent