import numpy as np import multiprocessing as mp from ctypes import c_bool from collections import OrderedDict from gym import logger from gym.spaces import Tuple, Dict from gym.error import CustomSpaceError from gym.vector.utils.spaces import _BaseGymSpaces __all__ = ["create_shared_memory", "read_from_shared_memory", "write_to_shared_memory"] def create_shared_memory(space, n=1, ctx=mp): """Create a shared memory object, to be shared across processes. This eventually contains the observations from the vectorized environment. Parameters ---------- space : `gym.spaces.Space` instance Observation space of a single environment in the vectorized environment. n : int Number of environments in the vectorized environment (i.e. the number of processes). ctx : `multiprocessing` context Context for multiprocessing. Returns ------- shared_memory : dict, tuple, or `multiprocessing.Array` instance Shared object across processes. """ if isinstance(space, _BaseGymSpaces): return create_base_shared_memory(space, n=n, ctx=ctx) elif isinstance(space, Tuple): return create_tuple_shared_memory(space, n=n, ctx=ctx) elif isinstance(space, Dict): return create_dict_shared_memory(space, n=n, ctx=ctx) else: raise CustomSpaceError( "Cannot create a shared memory for space with " "type `{0}`. Shared memory only supports " "default Gym spaces (e.g. `Box`, `Tuple`, " "`Dict`, etc...), and does not support custom " "Gym spaces.".format(type(space)) ) def create_base_shared_memory(space, n=1, ctx=mp): dtype = space.dtype.char if dtype in "?": dtype = c_bool return ctx.Array(dtype, n * int(np.prod(space.shape))) def create_tuple_shared_memory(space, n=1, ctx=mp): return tuple( create_shared_memory(subspace, n=n, ctx=ctx) for subspace in space.spaces ) def create_dict_shared_memory(space, n=1, ctx=mp): return OrderedDict( [ (key, create_shared_memory(subspace, n=n, ctx=ctx)) for (key, subspace) in space.spaces.items() ] ) def read_from_shared_memory(shared_memory, space, n=1): """Read the batch of observations from shared memory as a numpy array. Parameters ---------- shared_memory : dict, tuple, or `multiprocessing.Array` instance Shared object across processes. This contains the observations from the vectorized environment. This object is created with `create_shared_memory`. space : `gym.spaces.Space` instance Observation space of a single environment in the vectorized environment. n : int Number of environments in the vectorized environment (i.e. the number of processes). Returns ------- observations : dict, tuple or `np.ndarray` instance Batch of observations as a (possibly nested) numpy array. Notes ----- The numpy array objects returned by `read_from_shared_memory` shares the memory of `shared_memory`. Any changes to `shared_memory` are forwarded to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`. """ if isinstance(space, _BaseGymSpaces): return read_base_from_shared_memory(shared_memory, space, n=n) elif isinstance(space, Tuple): return read_tuple_from_shared_memory(shared_memory, space, n=n) elif isinstance(space, Dict): return read_dict_from_shared_memory(shared_memory, space, n=n) else: raise CustomSpaceError( "Cannot read from a shared memory for space with " "type `{0}`. Shared memory only supports " "default Gym spaces (e.g. `Box`, `Tuple`, " "`Dict`, etc...), and does not support custom " "Gym spaces.".format(type(space)) ) def read_base_from_shared_memory(shared_memory, space, n=1): return np.frombuffer(shared_memory.get_obj(), dtype=space.dtype).reshape( (n,) + space.shape ) def read_tuple_from_shared_memory(shared_memory, space, n=1): return tuple( read_from_shared_memory(memory, subspace, n=n) for (memory, subspace) in zip(shared_memory, space.spaces) ) def read_dict_from_shared_memory(shared_memory, space, n=1): return OrderedDict( [ (key, read_from_shared_memory(shared_memory[key], subspace, n=n)) for (key, subspace) in space.spaces.items() ] ) def write_to_shared_memory(index, value, shared_memory, space): """Write the observation of a single environment into shared memory. Parameters ---------- index : int Index of the environment (must be in `[0, num_envs)`). value : sample from `space` Observation of the single environment to write to shared memory. shared_memory : dict, tuple, or `multiprocessing.Array` instance Shared object across processes. This contains the observations from the vectorized environment. This object is created with `create_shared_memory`. space : `gym.spaces.Space` instance Observation space of a single environment in the vectorized environment. Returns ------- `None` """ if isinstance(space, _BaseGymSpaces): write_base_to_shared_memory(index, value, shared_memory, space) elif isinstance(space, Tuple): write_tuple_to_shared_memory(index, value, shared_memory, space) elif isinstance(space, Dict): write_dict_to_shared_memory(index, value, shared_memory, space) else: raise CustomSpaceError( "Cannot write to a shared memory for space with " "type `{0}`. Shared memory only supports " "default Gym spaces (e.g. `Box`, `Tuple`, " "`Dict`, etc...), and does not support custom " "Gym spaces.".format(type(space)) ) def write_base_to_shared_memory(index, value, shared_memory, space): size = int(np.prod(space.shape)) destination = np.frombuffer(shared_memory.get_obj(), dtype=space.dtype) np.copyto( destination[index * size : (index + 1) * size], np.asarray(value, dtype=space.dtype).flatten(), ) def write_tuple_to_shared_memory(index, values, shared_memory, space): for value, memory, subspace in zip(values, shared_memory, space.spaces): write_to_shared_memory(index, value, memory, subspace) def write_dict_to_shared_memory(index, values, shared_memory, space): for key, subspace in space.spaces.items(): write_to_shared_memory(index, values[key], shared_memory[key], subspace)