import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env class SwimmerEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): mujoco_env.MujocoEnv.__init__(self, "swimmer.xml", 4) utils.EzPickle.__init__(self) def step(self, a): ctrl_cost_coeff = 0.0001 xposbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) xposafter = self.sim.data.qpos[0] reward_fwd = (xposafter - xposbefore) / self.dt reward_ctrl = -ctrl_cost_coeff * np.square(a).sum() reward = reward_fwd + reward_ctrl ob = self._get_obs() return ob, reward, False, dict(reward_fwd=reward_fwd, reward_ctrl=reward_ctrl) def _get_obs(self): qpos = self.sim.data.qpos qvel = self.sim.data.qvel return np.concatenate([qpos.flat[2:], qvel.flat]) def reset_model(self): self.set_state( self.init_qpos + self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq), self.init_qvel + self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nv), ) return self._get_obs()