"""A collection of stateful action wrappers. * StickyAction - There is a probability that the action is taken again """ from __future__ import annotations from typing import Any, SupportsFloat import gymnasium as gym from gymnasium.core import WrapperActType, WrapperObsType from gymnasium.error import InvalidProbability class StickyActionV0(gym.Wrapper): """Wrapper which adds a probability of repeating the previous action. This wrapper follows the implementation proposed by `Machado et al., 2018 `_ in Section 5.2 on page 12. """ def __init__(self, env: gym.Env, repeat_action_probability: float): """Initialize StickyAction wrapper. Args: env (Env): the wrapped environment repeat_action_probability (int | float): a probability of repeating the old action. """ if not 0 <= repeat_action_probability < 1: raise InvalidProbability( f"repeat_action_probability should be in the interval [0,1). Received {repeat_action_probability}" ) super().__init__(env) self.repeat_action_probability = repeat_action_probability self.last_action: WrapperActType | None = None def reset( self, *, seed: int | None = None, options: dict[str, Any] | None = None ) -> tuple[WrapperObsType, dict[str, Any]]: """Reset the environment.""" self.last_action = None return super().reset(seed=seed, options=options) def step( self, action: WrapperActType ) -> tuple[WrapperObsType, SupportsFloat, bool, bool, dict]: """Execute the action.""" if ( self.last_action is not None and self.np_random.uniform() < self.repeat_action_probability ): action = self.last_action self.last_action = action return action