import jax.numpy as jnp import numpy as np import pytest import torch from gymnasium.experimental.wrappers import JaxToTorchV0 from gymnasium.experimental.wrappers.torch_to_jax import jax_to_torch, torch_to_jax from tests.testing_env import GenericTestEnv def torch_data_equivalence(data_1, data_2) -> bool: if type(data_1) == type(data_2): if isinstance(data_1, dict): return data_1.keys() == data_2.keys() and all( torch_data_equivalence(data_1[k], data_2[k]) for k in data_1.keys() ) elif isinstance(data_1, (tuple, list)): return len(data_1) == len(data_2) and all( torch_data_equivalence(o_1, o_2) for o_1, o_2 in zip(data_1, data_2) ) elif isinstance(data_1, torch.Tensor): return data_1.shape == data_2.shape and np.allclose( data_1, data_2, atol=0.00001 ) else: return data_1 == data_2 else: return False @pytest.mark.parametrize( "value, expected_value", [ (1.0, torch.tensor(1.0)), (2, torch.tensor(2)), ((3.0, 4), (torch.tensor(3.0), torch.tensor(4))), ([3.0, 4], [torch.tensor(3.0), torch.tensor(4)]), ( { "a": 6.0, "b": 7, }, {"a": torch.tensor(6.0), "b": torch.tensor(7)}, ), (torch.tensor(1.0), torch.tensor(1.0)), (torch.tensor([1, 2]), torch.tensor([1, 2])), (torch.tensor([[1.0], [2.0]]), torch.tensor([[1.0], [2.0]])), ( {"a": (1, torch.tensor(2.0), torch.tensor([3, 4])), "b": {"c": 5}}, { "a": (torch.tensor(1), torch.tensor(2.0), torch.tensor([3, 4])), "b": {"c": torch.tensor(5)}, }, ), ], ) def test_roundtripping(value, expected_value): """We test numpy -> jax -> numpy as this is direction in the NumpyToJax wrapper.""" assert torch_data_equivalence(jax_to_torch(torch_to_jax(value)), expected_value) def jax_reset_func(self, seed=None, options=None): return jnp.array([1.0, 2.0, 3.0]), {"data": jnp.array([1, 2, 3])} def jax_step_func(self, action): assert isinstance(action, jnp.DeviceArray), type(action) return ( jnp.array([1, 2, 3]), jnp.array(5.0), jnp.array(True), jnp.array(False), {"data": jnp.array([1.0, 2.0])}, ) def test_jax_to_torch(): env = GenericTestEnv(reset_fn=jax_reset_func, step_fn=jax_step_func) # Check that the reset and step for jax environment are as expected obs, info = env.reset() assert isinstance(obs, jnp.DeviceArray) assert isinstance(info, dict) and isinstance(info["data"], jnp.DeviceArray) obs, reward, terminated, truncated, info = env.step(jnp.array([1, 2])) assert isinstance(obs, jnp.DeviceArray) assert isinstance(reward, jnp.DeviceArray) assert isinstance(terminated, jnp.DeviceArray) and isinstance( truncated, jnp.DeviceArray ) assert isinstance(info, dict) and isinstance(info["data"], jnp.DeviceArray) # Check that the wrapped version is correct. wrapped_env = JaxToTorchV0(env) obs, info = wrapped_env.reset() assert isinstance(obs, torch.Tensor) assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor) obs, reward, terminated, truncated, info = wrapped_env.step(torch.tensor([1, 2])) assert isinstance(obs, torch.Tensor) assert isinstance(reward, float) assert isinstance(terminated, bool) and isinstance(truncated, bool) assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor)